搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反旋双色椭圆偏振激光场中Ar原子的非序列双电离

葛振杰 苏旭 白丽华

引用本文:
Citation:

反旋双色椭圆偏振激光场中Ar原子的非序列双电离

葛振杰, 苏旭, 白丽华

Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Ge Zhen-Jie, Su Xu, Bai Li-Hua
PDF
HTML
导出引用
  • 利用经典系综方法研究了不同椭偏率的反旋双色椭圆偏振(two-color elliptically polarized, TCEP)激光场中Ar原子非序列双电离(nonsequential double ionization, NSDI)的电子关联特性和再碰撞动力学. 不同于反旋双色圆偏振激光场, 反旋TCEP激光场不再具有空间对称性, 返回电子主要从一个方向返回母离子, 从而导致电子动量分布表现出很强的不对称性. 数值结果显示随着椭偏率的增大, Ar原子NSDI的产量逐渐减小, 并且电子对在椭圆偏振激光场长轴方向上的关联电子动量分布, 从主要位于第一和第三象限的正相关逐渐演变为主要位于第二和第四象限的反相关. 通过对不同特征时间的统计分析表明, 随着椭偏率的增大, 旅行时间和返回电子的重碰撞能量逐渐减小, 而延迟时间却增大, 这是电子对关联特性发生变化的主要原因. 此外, 进一步分析发现, 无论是“短轨迹”还是“长轨迹”, 椭偏率的增大都会使两个电子由同向出射逐渐转变为反向出射, 这表明椭偏率和旅行时间都影响着电子的出射方向.
    Electron correlation behaviors and recollision dynamics in nonsequential double ionization (NSDI) of Ar atoms in counter-rotating two-color elliptically polarized (TCEP) laser fields are investigated by using the classical ensemble model. The combined electric field in counter-rotating TCEP laser pulses traces out a trefoil pattern, i.e. the waveform in a period shows three leaves in different directions, and each leaf is called a lobe. Unlike counter-rotating two-color circularly polarized laser field, the combined electric field has no spatial symmetry. The amplitudes of the three field lobes and the angles between them are different. Thus, the returning electron mainly returns to the parent ion from one direction, and the electron momentum distributions show strong asymmetry. Numerical results show that the NSDI yield gradually decreases as the ellipticity increases, and the correlated behavior of the correlated electron momentum along the long axis of the laser polarization plane gradually evolves from correlation behavior mainly located in the first quadrant and the third quadrant to anti-correlation behavior mainly located in the second quadrant and fourth quadrant. In order to further understand the correlation behaviors of electron pairs, different characteristic times in the NSDI processes are discussed, respectively. It is found that single ionization events and recollision events gradually decrease, but single ionization time and recollision time change slightly. This may be the main reason for the decrease in NSDI yield. And as the ellipticity increases, the traveling time and the recollision energy gradually decrease, while the delay time increases. Therefore, we can conclude that ellipticity may be responsible for the NSDI process. In addition, further analysis finds that the shape of the trajectory becomes more and more triangular as the ellipticity increases due to the counter-rotating TCEP laser fields of the specific dynamical symmetries of the total net electric field. And it is found that whether it is a “short trajectory” or a “long trajectory”, more populations move to the second quadrant and the fourth quadrant as the ellipticity increases. The results show that increasing the ellipticity will gradually change the two electrons from emitting in the same direction to emitting in the opposite direction. This well demonstrates that both ellipticity and travelling time are responsible for the formation of the electron momentum distribution at the recollision time, meaning that both of them affect the emitted directions of both electrons.
      通信作者: 白丽华, lhbai@163.com
      Corresponding author: Bai Li-Hua, lhbai@163.com
    [1]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202Google Scholar

    [2]

    Chen Y J, Yu S G, Sun R P, Gong C, Hua L Q, Lai X Y, Quan W, Liu X J 2016 Chin. Phys. Lett. 33 043301Google Scholar

    [3]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [4]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [5]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y M, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [9]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [10]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [11]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [12]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [13]

    Li H Y, Wang B B, Chen J, Jiang H B, Li X F, Liu J, Gong Q H, Yan Z C, Fu P M 2007 Phys. Rev. A 76 033405Google Scholar

    [14]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [15]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [16]

    Ben S, Wang T, Xu T T, Guo J, Liu X S 2016 Opt. Express 24 7525Google Scholar

    [17]

    Ye D F, Liu J 2010 Phys. Rev. A 81 043402Google Scholar

    [18]

    Bergues B, Kübel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nat. Commun. 3 813Google Scholar

    [19]

    Ye D, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [20]

    Kulander K C, Cooper J, Schafer K J 1995 Phys. Rev. A 51 561Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q Y, Liu X S 2020 Chin. Phys. B 29 013203Google Scholar

    [23]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [24]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [25]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [26]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [27]

    Gillen G D, Walker M A, Van Woerkom L D 2001 Phys. Rev. A 64 043413Google Scholar

    [28]

    Li Y, Feng L Q, Qiao Y 2019 Chem. Phys. 527 110497Google Scholar

    [29]

    Xu C Y, Feng L Q, Qiao Y, Li Y 2020 Eur. Phys. J. D 74 139Google Scholar

    [30]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schöffler M, Jahnke T, Dörner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [31]

    Mancuso C A, Dorney K M, Dorney D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [32]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [33]

    Huang C, Zhong M M, Wu Z M 2018 Opt. Express 26 26045Google Scholar

    [34]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [35]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [36]

    Peng M, Bai L H 2020 Chin. Opt. Lett. 18 110201Google Scholar

    [37]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [38]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su, J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [39]

    Xu T T, Chen J H, Pan X F, Zhang H D, Ben S, Liu X S 2018 Chin. Phys. B 27 093201Google Scholar

    [40]

    Gazibegović-Busuladži A, Busuladžić M, Čerkić A, Hasović E, Becker W, Milošević D B 2019 J. Phys. Conf. Ser. 1206 012003Google Scholar

    [41]

    Milošević D B, Becker W 2020 Phys. Rev. A 102 023107Google Scholar

    [42]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [43]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [44]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [45]

    辛国国, 叶地发, 赵清, 刘杰 2011 物理学报 60 093204Google Scholar

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204Google Scholar

    [46]

    Ben S, Guo P Y, Pan X F, Xu T T, Song K L, Liu X S 2017 Chem. Phys. Lett. 679 38Google Scholar

    [47]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [48]

    Zhu Q Y, Xu T T, Ben S, Chen J H, Song K L, Liu X S 2018 Opt. Commun. 426 602Google Scholar

  • 图 1  (a)—(d)不同椭偏率下, 反旋TCEP激光场的电场结构和负矢势曲线, 三瓣代表电场结构, 三角形代表反旋TCEP激光场的负矢势; (e)对于不同椭偏率的反旋TCEP激光场下, Ar原子随激光强度变化的双电离产量曲线

    Fig. 1.  (a)–(d) Electric field structure and negative vector potential curve of counter-rotating TCEP laser fields for different ellipticities. The three lobes represent the electric field structure, and the triangle structure represents the negative vector potential of the counter-rotating TCEP laser field. (e) The yield of NSDI for Ar as a function of laser intensity in counter-rotating TCEP laser fields for different ellipticities.

    图 2  不同椭偏率的反旋TCEP激光场中电子动量分布(实线为反旋TCEP激光场的负矢势$ - {\boldsymbol A}(t)$) (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.4$; (c) $\varepsilon = 0.6$; (d) $\varepsilon = 0.8$

    Fig. 2.  Momentum distributions at different ellipticities in counter-rotating TCEP laser fields: (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.4$; (c) $\varepsilon = $$ 0.6$; (d) $\varepsilon = 0.8$. The solid line represents the negative vector potential $ - {\boldsymbol A}(t)$of counter-rotating TCEP laser fields.

    图 3  (a)—(d)不同椭偏率下, Ar原子单电离时刻${t_{{\text{SI}}}}$的分布; (e)—(h)不同椭偏率下, Ar原子重碰撞时刻${t_{{\text{RC}}}}$的分布

    Fig. 3.  (a)–(d) Statistical distribution of the single ionization time ${t_{{\text{SI}}}}$ for Ar atoms with different ellipticities; (e)–(h) statistical distribution of the electron recollision time ${t_{{\text{RC}}}}$ for Ar atoms with different ellipticities.

    图 4  (a)—(d)不同椭偏率下, 两个电子在x方向上的关联电子动量分布; (e)—(h)不同椭偏率下, 两个电子在y方向上的关联电子动量分布

    Fig. 4.  (a)–(d) Correlated momentum distributions of the electrons in the x direction for different ellipticities; (e)–(h) correlated momentum distributions of the electrons in the y direction for different ellipticities.

    图 5  (a)—(d)不同椭偏率下, Ar原子旅行时间(${t_{{\text{RC}}}} - {t_{{\text{SI}}}}$)的分布; (e)—(h)不同椭偏率下, 返回电子重碰撞能量的分布; (i)—(l)不同椭偏率下, Ar原子延迟时间(${t_{{\text{DI}}}} - {t_{{\text{RC}}}}$)的分布

    Fig. 5.  (a)–(d) Statistical distribution of the traveling time (${t_{{\text{RC}}}} - {t_{{\text{SI}}}}$) for Ar atoms with different ellipticities; (e)–(h) distributions of the returning electron recollision energy with different ellipticities; (i)–(l) statistical distribution of the delay time $({t_{{\text{DI}}}} - {t_{{\text{RC}}}}$) for Ar atoms with different ellipticities.

    图 6  不同椭偏率的反旋TCEP激光场中两个电子轨迹 (a)—(d) 上面一行是“短轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$)的电子轨迹; (e)—(h)下面一行是“长轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$)的电子轨迹

    Fig. 6.  Trajectory of the two electrons at different ellipticities in counter-rotating TCEP laser fields: (a)–(d) The top row shows trajectories of the ionized electron coming back to the parent ion core with the “short trajectory” (${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$); (e)–(h) the bottom row shows trajectories of the ionized electron coming back to the parent ion core with the “long trajectory” $({t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$).

    图 7  不同椭偏率下, 两个电子在x方向上的关联电子动量分布 (a)—(d)上面一行是“短轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2\; {\text{o}}{\text{.c}}{.}$)的关联电子动量分布; (e)—(h)下面一行是“长轨迹”( ${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$)的关联电子动量分布

    Fig. 7.  Correlated momentum distributions of the electrons in the x direction for different ellipticities: (a)–(d) The top row shows correlated momentum distributions with the “short trajectory” (${t_{{\text{RC}}}} - {t_{{\text{SI}}}} < 0.2 \;{\text{o}}{\text{.c}}{.}$); (e)–(h) the bottom row shows correlated momentum distributions with the “long trajectory”(${t_{{\text{RC}}}} - {t_{{\text{SI}}}} \geqslant 0.2\; {\text{o}}{\text{.c}}{.}$).

  • [1]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202Google Scholar

    [2]

    Chen Y J, Yu S G, Sun R P, Gong C, Hua L Q, Lai X Y, Quan W, Liu X J 2016 Chin. Phys. Lett. 33 043301Google Scholar

    [3]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [4]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [5]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y M, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [9]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [10]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [11]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [12]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [13]

    Li H Y, Wang B B, Chen J, Jiang H B, Li X F, Liu J, Gong Q H, Yan Z C, Fu P M 2007 Phys. Rev. A 76 033405Google Scholar

    [14]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [15]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [16]

    Ben S, Wang T, Xu T T, Guo J, Liu X S 2016 Opt. Express 24 7525Google Scholar

    [17]

    Ye D F, Liu J 2010 Phys. Rev. A 81 043402Google Scholar

    [18]

    Bergues B, Kübel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nat. Commun. 3 813Google Scholar

    [19]

    Ye D, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [20]

    Kulander K C, Cooper J, Schafer K J 1995 Phys. Rev. A 51 561Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q Y, Liu X S 2020 Chin. Phys. B 29 013203Google Scholar

    [23]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [24]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [25]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [26]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [27]

    Gillen G D, Walker M A, Van Woerkom L D 2001 Phys. Rev. A 64 043413Google Scholar

    [28]

    Li Y, Feng L Q, Qiao Y 2019 Chem. Phys. 527 110497Google Scholar

    [29]

    Xu C Y, Feng L Q, Qiao Y, Li Y 2020 Eur. Phys. J. D 74 139Google Scholar

    [30]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schöffler M, Jahnke T, Dörner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [31]

    Mancuso C A, Dorney K M, Dorney D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [32]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [33]

    Huang C, Zhong M M, Wu Z M 2018 Opt. Express 26 26045Google Scholar

    [34]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [35]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [36]

    Peng M, Bai L H 2020 Chin. Opt. Lett. 18 110201Google Scholar

    [37]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [38]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su, J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [39]

    Xu T T, Chen J H, Pan X F, Zhang H D, Ben S, Liu X S 2018 Chin. Phys. B 27 093201Google Scholar

    [40]

    Gazibegović-Busuladži A, Busuladžić M, Čerkić A, Hasović E, Becker W, Milošević D B 2019 J. Phys. Conf. Ser. 1206 012003Google Scholar

    [41]

    Milošević D B, Becker W 2020 Phys. Rev. A 102 023107Google Scholar

    [42]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [43]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [44]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [45]

    辛国国, 叶地发, 赵清, 刘杰 2011 物理学报 60 093204Google Scholar

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204Google Scholar

    [46]

    Ben S, Guo P Y, Pan X F, Xu T T, Song K L, Liu X S 2017 Chem. Phys. Lett. 679 38Google Scholar

    [47]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [48]

    Zhu Q Y, Xu T T, Ben S, Chen J H, Song K L, Liu X S 2018 Opt. Commun. 426 602Google Scholar

  • [1] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [2] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [5] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [6] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [8] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [12] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [13] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [14] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [15] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [16] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [17] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [18] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [19] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [20] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
计量
  • 文章访问数:  1841
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2024-01-28
  • 上网日期:  2024-03-04
  • 刊出日期:  2024-05-05

/

返回文章
返回