-
高分辨率宽频谱测量技术在天文学、无线通信、医学成像等领域具有重要应用价值. 金刚石氮-空位(nitrogen-vacancy, NV)色心因其高稳定性、高灵敏度、实时监测、单点探测以及适用于长时间测量等特性已成为频谱分析仪备受关注的选择. 目前, 基于NV色心作为探测器的宽频谱分析仪能够在几十GHz频带内进行实时频谱分析, 然而其频率分辨率仅达到MHz水平. 本文通过搭建结合连续外差技术的量子金刚石微波频谱成像系统, 利用磁场梯度对NV色心谐振频率进行空间编码, 成功获取了900 MHz—6.0 GHz范围内完整的频谱数据. 在可测频谱范围内, 系统进一步采用连续外差的方法, 同时施加谐振微波和轻微失谐的辅助微波对NV色心进行有效激发, 增强了NV磁强计对微弱微波信号的响应. 该方法使系统在可测频谱范围内实现了1 Hz的频率分辨率, 并能够对间隔为1 MHz扫频步进的多个频点的频率分辨率进行单独测量. 以上研究结果表明基于NV色心的宽频谱测量可实现Hz级频率分辨, 为未来的频谱分析和应用提供了有力的技术支持.High-resolution wide-spectrum measurement techniques have important applications in fields such as astronomy, wireless communication, and medical imaging. Nitrogen-vacancy (NV) center in diamond is well known for its high stability, high sensitivity, real-time monitoring, single-point detection, and suitability for long-term measurement, and has an outstanding choice for spectrum analyzers. Currently, spectrum analyzers based on NV centers as detectors can perform real-time spectrum analysis in the range of several tens of gigahertz, but their frequency resolution is limited to a MHz level. In this study, we construct a quantum diamond microwave spectrum imaging system by combining continuous wave-mixing techniques. According to the spin-related properties of the NV center in diamond, we implement optical pumping by 532 nm green laser light illuminating the diamond NV center. A spherical magnet is used to produce a magnetic field gradient along the direction of the diamond crystal. By adjusting the size and direction of the magnetic field gradient, spatial encoding of the resonance frequency of the NV center is achieved. The magnetic field gradient induces the Zeeman effect on the diamond surface at different positions, generating corresponding ODMR signals. Through accurate programming, we coordinate the frequency scanning step size of the microwave source with the camera exposure and image storage time, and synchronize them circularly according to the order of image acquisition. Ultimately, after algorithmic processing, we successfully obtain comprehensive spectrum data in a range from 900 MHz to 6.0 GHz. Within the measurable spectrum range, the system employs continuous wave-mixing, simultaneously applying resonant microwaves and slightly detuning auxiliary microwaves to effectively excite the NV center. This method triggers off microwave interference effects, disrupting the balance between laser-induced polarization and microwave-induced spontaneous relaxation. Specifically, microwave interference causes the phase and amplitude of the fluorescence signal to change, leading to the generation of alternating current fluorescence signals. This further enhances the response of the NV magnetometer to weak microwave signals. The method enables the system to achieve a frequency resolution of 1 Hz in the measurable spectrum range, and it can separately measure the frequency resolution of multiple frequency points with a frequency step size of 1 MHz. The research results indicate that the wide-spectrum measurement based on NV centers can achieve sub-hertz frequency resolution, providing robust technical support for future spectrum analysis and applications.
[1] Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar
[2] Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar
[3] Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar
[4] Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar
[5] Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar
[6] Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar
[7] Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar
[8] Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar
[9] Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar
[10] Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar
[11] Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar
[12] Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1
[13] Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar
[14] Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar
[15] Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar
[16] Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar
[17] Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar
[18] Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar
[19] Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar
[20] Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar
[21] Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar
-
图 1 NV色心频谱分析 (a) NV色心能级图; (b) 沿D轴向金刚石晶体施加磁场梯度; (c) 在金刚石晶体表面不同位置, 磁场梯度引起塞曼效应导致相应的ODMR信号产生; (d) 使用相机对图像进行采集并将其保存为三维数据; (e) 利用算法拟合将图像存储格式从三维数据转变为二维数据, 在整个磁梯度范围内, 通过拼接图像来生成对应的频谱图像; (f) 测量可测频谱范围内的任意频点的频率分辨率
Fig. 1. NV center spectral analysis: (a) Energy level diagram of the NV center; (b) application of a magnetic field gradient along the D-axis of the diamond crystal; (c) magnetic field gradient induces the Zeeman effect at different positions on the surface of the diamond crystal, resulting in corresponding ODMR signals; (d) acquisition of images using a camera and conversion into three-dimensional data; (e) utilization of an algorithm for fitting, transforming the image storage format from three-dimensional data to two-dimensional data, and generating the corresponding spectral images across the entire magnetic gradient range; (f) measurement of frequency resolution at arbitrary frequency points within the measurable spectral range.
图 3 调整磁场与NV轴对准的过程 (a) ODMR成像呈现了四组谱线, 对应于磁场方向与NV色心的4个轴向均未对齐; (b) ODMR成像显示了两组谱线, 其中三组谱线重叠, 对应于磁场与某一NV轴对齐
Fig. 3. Process to align magnetic field and NV centers: (a) ODMR imaging presents four sets of spectra, corresponding to a misalignment of the magnetic field with all four axial directions of the NV centers; (b) ODMR imaging displays two sets of spectra, with three of them overlapping, indicating alignment of the magnetic field with a specific NV axis.
图 6 频率分辨率测量结果 (a) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验时域测量结果; (b) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验频域测量结果; (c) 在可测频谱范围内多个谐振频率点的频率分辨率测量结果
Fig. 6. Frequency resolution measurement results: (a) Time-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (b) frequency-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (c) frequency resolution measurement results of multiple resonant frequency points within the measurable spectral range.
-
[1] Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar
[2] Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar
[3] Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar
[4] Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar
[5] Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar
[6] Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar
[7] Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar
[8] Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar
[9] Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar
[10] Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar
[11] Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar
[12] Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1
[13] Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar
[14] Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar
[15] Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar
[16] Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar
[17] Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar
[18] Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar
[19] Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar
[20] Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar
[21] Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar
计量
- 文章访问数: 2460
- PDF下载量: 132
- 被引次数: 0