搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器

宿冉 奚昭颖 李山 张嘉汉 姜明明 刘增 唐为华

引用本文:
Citation:

基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器

宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华

GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector

Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua
PDF
HTML
导出引用
  • 氧化镓(Ga2O3)作为超宽禁带半导体在深紫外探测领域有极其重要的应用价值. 它能与GaSe形成典型的Ⅱ型异质结构, 促进载流子分离与传输, 进而实现高性能的自供电探测. 本文利用等离子体增强化学气相沉积(PECVD)技术在蓝宝石衬底上生长了Ga2O3薄膜, 并采用布里奇曼技术在氧化镓薄膜上生长了GaSe薄膜, 构建了GaSe/β-Ga2O3异质结光电探测器, 分析其中涉及的光物理与界面物理问题. 该探测器对深紫外光有很好的响应性能, 在8 V的电压下器件的暗电流仅为1.83 pA, 254 nm光照下的光电流达到了6.5 nA, 且UV-C/可见光(254 nm/600 nm)的抑制比约为354, 即使在很小的光照强度下, 响应度和探测度也达到了1.49 mA/W 和 6.65× 1011 Jones. 同时, 由于结界面上的空间电荷区形成的光伏效应, 该探测器在零偏压下表现出自供电性能, 开路电压为0.2 V. 此外, 探测器有很好的灵敏度, 无论是在电压恒定的条件下用不同光强的光照射探测器, 还是在光强恒定条件下改变电压, 器件都能快速响应.
    UV photodetectors have the advantages of high sensitivity and fast response speed. As an ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) plays an extremely important role in detecting deep ultraviolet. It can form a typical type-II heterostructure with GaSe, promoting carrier separation and transport. In this work, Ga2O3 epitaxial films are grown on sapphire substrates by plasma-assisted chemical vapor deposition (PECVD). The GaSe films and GaSe/β-Ga2O3 heterojunction photodetectors are grown on gallium oxide films by Bridgeman technology. The detector has a good response to deep ultraviolet light, the dark current of the device is only 1.83 pA at 8 V, and the photocurrent reaches 6.5 nA at 254 nm. The UVC/Visible (254 nm/600 nm) has a high rejection ratio of about 354. At very small light intensities, the responsivity and detection can reach 1.49 mA/W and 6.65 × 1011 Jones, respectively. At the same time, due to the photovoltaic effect formed by the space charge region at the junction interface, the detector exhibits self-powered supply performance at zero bias voltage, and the open-circuit voltage is 0.2 V. In addition, the detector has a very good sensitivity. The device can respond quickly, whether it is irradiated with different light intensities under constant voltage, or with different voltages under constant light intensity. It can respond within milliseconds under a bias voltage of 10 V. This work demonstrates the enormous potential of heterojunctions in photoelectric detection by analyzing the photophysical and interface physical issues involved in heterojunction photodetectors, and provides a possibility for detecting the deep ultraviolet of gallium oxide.
      通信作者: 刘增, zengliu_imu@163.com ; 唐为华, whtang@njupt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 62204125, 62305171)、国家重点研发计划(批准号: 2022YFB3605404)和国家自然科学基金联合基金(批准号: U23A20349)资助的课题.
      Corresponding author: Liu Zeng, zengliu_imu@163.com ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 62204125, 62305171), the National Key Research and Development Program of China (Grant No. 2022YFB3605404), and the Joint Funds of the National Natural Science Foundation of China (Grant No. U23A20349).
    [1]

    Xi Z Y, Liu Z, Yang L L, Tang K, Li L, Shen G H, Zhang M L, Li S, Guo Y F, Tang W H 2023 ACS Appl. Mater. Interfaces 15 40744Google Scholar

    [2]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photon. 4 2937Google Scholar

    [3]

    Tang X, Li K H, Zhao Y, Sui Y, Liang H, Liu Z, Liao C H, Babatain W, Lin R, Wang C, Lu Y, Alqatari F S, Mei Z, Tang W, Li X 2021 ACS Appl. Mater. Interfaces 14 1304

    [4]

    Wang Y H, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W H, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [5]

    Imura S, Mineo K, Miyakawa K, Nanba M, Ohtake H, Kubota M 2018 IEEE Sensors J. 18 3108Google Scholar

    [6]

    Sorifi S, Kaushik S, Sheoran H, Singh R 2022 J. Phys. D: Appl. Phys. 55 365105Google Scholar

    [7]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [8]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [9]

    Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O 2004 IEEE J. Select. Topics Quantum Electron. 10 742Google Scholar

    [10]

    Xu Z, Zang J, Yang X, Chen Y, Lou Q, Li K, Lin C, Zhang Z, Shan C 2021 Semicond. Sci. Technol. 36 065007Google Scholar

    [11]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [12]

    Li L, Liao F, Hu X 2020 Superlattices Microstruct. 141 106502Google Scholar

    [13]

    Jing L, Ai C, Guo X, Cao J, Jing D, Luo B, Ma L 2023 Ind. Eng. Chem. Res. 62 6103Google Scholar

    [14]

    Moon S, Bae J, Kim J 2022 J. Mater. Chem. C 10 6281Google Scholar

    [15]

    Lu C, Gao L, Meng F, Zhang Q, Yang L, Liu Z, Zhu M, Chen X, Lyu X, Wang Y, Liu J, Ji A, Li P, Gu L, Cao Z, Lu N 2023 J. Appl. Phys. 133 045306Google Scholar

    [16]

    Han Y, Jiao S, Jing J, Chen L, Rong P, Ren S, Wang D, Gao S, Wang J 2023 Nano Res. 17 2960Google Scholar

    [17]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2016 J. Am. Chem. Soc. 139 482Google Scholar

    [18]

    Qasrawi A F 2005 Cryst. Res. Technol. 40 610Google Scholar

    [19]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [20]

    Yuan X, Tang L, Liu S, Wang P, Chen Z, Zhang C, Liu Y, Wang W, Zou Y, Liu C, Guo N, Zou J, Zhou P, Hu W, Xiu F 2015 Nano Lett. 15 3571Google Scholar

    [21]

    Ben Aziza Z, Henck H, Pierucci D, Silly M G, Lhuillier E, Patriarche G, Sirotti F, Eddrief M, Ouerghi A 2016 ACS Nano 10 9679Google Scholar

    [22]

    Parlak M, Qasrawi A F, Ercelebi C 2003 Mater. Sci. 38 1507Google Scholar

    [23]

    Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L, Tang W 2020 J. Mater. Chem. C 8 4502Google Scholar

    [24]

    Mudiyanselage D H, Wang D, Fu H 2022 IEEE J. Electron Devices Soc. 10 89Google Scholar

    [25]

    Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [26]

    Abdullah M M, Bhagavannarayana G, Wahab M A 2010 J. Cryst. Growth 312 1534Google Scholar

    [27]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [28]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [29]

    Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q, Xu S, Zhang Y, Zhang J, Hao Y, Zhang C 2019 IEEE Photon. J. 11 1Google Scholar

    [30]

    He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B 2019 Phys. Status Solidi. (a) 217 1900861Google Scholar

    [31]

    Yakimov E B, Polyakov A Y, Shchemerov I V, Smirnov N B, Vasilev A A, Vergeles P S, Yakimov E E, Chernykh A V, Shikoh A S, Ren F, Pearton S J 2020 APL Mater. 8 111105Google Scholar

    [32]

    Bae J, Park J H, Jeon D W, Kim J 2021 APL Mater. 9 101108Google Scholar

    [33]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [34]

    Chen M, Zhang Z, Lv Z, Zhan R, Chen H, Jiang H, Chen J 2022 ACS Appl. Nano Mater. 5 351Google Scholar

    [35]

    Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari R 2016 J. Phys. : Condens. Matter 28 224005Google Scholar

    [36]

    Filippo E, Tepore M, Baldassarre F, Siciliano T, Micocci G, Quarta G, Calcagnile L, Tepore A 2015 Appl. Surf. Sci. 338 69Google Scholar

    [37]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [38]

    Liang S J, Cheng B, Cui X, Miao F 2019 Adv. Mater. 32 1903800Google Scholar

    [39]

    Kumar N, Kumail M, Lee J, Park H G, Kim J 2023 Mater. Res. Bull. 168 112466Google Scholar

    [40]

    Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y, Li X 2018 J. Mater. Chem. C 6 10982Google Scholar

    [41]

    Ma Y, Chen T, Zhang X, Tang W, Feng B, Hu Y, Zhang L, Zhou X, Wei X, Xu K, Mudiyanselage D, Fu H, Zhang B 2022 ACS Appl. Mater. Interfaces 14 35194Google Scholar

    [42]

    Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X, Long S 2021 Adv. Opt. Mater. 9 2100173Google Scholar

    [43]

    Park S, Park T, Park J H, Min J Y, Jung Y, Kyoung S, Kang T Y, Kim K H, Rim Y S, Hong J 2022 ACS Appl. Mater. Interfaces 14 25648Google Scholar

    [44]

    Wu C, Qiu L, Li S, Guo D, Li P, Wang S, Du P, Chen Z, Liu A, Wang X, Wu H, Wu F, Tang W 2021 Mater. Today Phys. 17 100335Google Scholar

    [45]

    Nguyen T M H, Tran M H, Bark C W 2023 ACS Appl. Electronic Mater. 5 6459Google Scholar

    [46]

    Wang Y, Tang Y, Li H, Yang Z, Zhang Q, He Z, Huang X, Wei X, Tang W, Huang W, Wu Z 2021 ACS Photon. 8 2256Google Scholar

  • 图 1  (a)实验装置示意图; (b) GaSe/β-Ga2O3异质结光电探测器示意图

    Fig. 1.  (a) Schematic diagram of the experimental setup; (b) schematic diagram of the GaSe/β-Ga2O3 heterojunction photodetector.

    图 2  (a) GaSe薄膜XRD图; (b) Ga2O3薄膜XRD图; (c) Ga2O3薄膜表面SEM图; (d) GaSe表面SEM图; (e) Ga2O3上生长GaSe的断面SEM图; (f) 蓝宝石上生长Ga2O3而未生长GaSe的断面SEM图; (g) GaSe, β-Ga2O3薄膜和GaSe/β-Ga2O3异质结的吸收光谱曲线图; (h) GaSe薄膜的(αhυ) 2-曲线图; (i) Ga2O3薄膜的(αhυ) 2-曲线图

    Fig. 2.  (a) XRD of GaSe films; (b) XRD of Ga2O3 films; (c) SEM images of Ga2O3 films; (d) SEM images of GaSe surfaces; (e) cross-sectional SEM images of GaSe grown on Ga2O3; (f) cross-sectional SEM images of Ga2O3 grown without GaSe on sapphire; (g) absorption spectra of GaSe, β-Ga2O3 films and GaSe/β-Ga2O3 heterojunctions; (h) (αhυ)2- curves of GaSe films; (i) (αhυ)2- curves of Ga2O3 films.

    图 3  (a) 基于异质结的PD在具有不同光强度的254 nm光的黑暗和照明下的半对数I-V曲线图; (b) 光电探测器在黑暗和光照下的响应曲线图; (c) Ga2O3薄膜在黑暗和光照下的响应曲线图; (d) GaSe在黑暗和光照下的响应曲线图; (e) 0 V电压下光电探测器在不同光强的I-t曲线图; (f) 强度为365.3 μW/cm2的254 nm光照下的不同偏置电压下光开关I-t曲线图; (g) 在10 V、强度为365.3 μW/cm2的254 nm光照下拟合响应时间图; (h) 在10 V、强度为348.3 μW/cm2的365 nm光照下拟合响应时间图

    Fig. 3.  (a)The semi log I-V curves of the heterojunction-based PD under dark and illumination of 254 nm light with various light intensities; the semi log I-V curves under darkness and light of (b) photodetector, (c) Ga2O3 film, (d) GaSe; I-t curves with light on/off switching at (e) 0 V under various light intensities and (f) various bias voltages under 254 nm light illumination with an intensity of 365.3 μW/cm2; fitting response times under (g) 254 nm light illumination with an intensity of 365.3 μW/cm2 at 10 V, (h) 365 nm light illumination with an intensity of 348.3 μW/cm2 at 10 V.

    图 4  (a) GaSe/β-Ga2O3异质结光电探测器的响应光谱图; (b) 响应度和探测率与光照强度的线性关系图

    Fig. 4.  (a) Spectrum responsivity of the GaSe/β-Ga2O3 photodetector; (b) linear relationship between responsivity and detectivity as a function of light intensity.

    图 5  (a) GaSe和Ga2O3的能带排列图; (b) 异质结零偏压下的能带传输机制图; (c)异质结正偏压下的能带传输机制和等效电路模型图

    Fig. 5.  (a) Band arrangement of GaSe and Ga2O3; (b) band transport mechanism of heterojunction at zero bias; (c) band transport mechanism and equivalent circuit model of heterojunction under positive bias.

    表 1  氧化镓基光电探测器性能比较

    Table 1.  Comparison of the performances of Ga2O3-based photodetectors

    photodetector Wavelength/nm Idark/pA PDCR R/(mA·W–1) D*/Jones Reference
    GaSe/β-Ga2O3 254 1.83 5.5×103 1.49 6.65×1011 This work
    MoS2/Ga2O3 254 0.9 670 2.05 1.2×1011 [40]
    p-GaN/β-Ga2O3 254 3.08 4.1×103 3800 1.12×1014 [41]
    AgNW-Ga2O3 254 <10 1.2×105 14.8 5.1×1012 [42]
    Ag2O/β-Ga2O3 254 92.8 3.4×108 25.65 6.1×1011 [43]
    CuGaO2/Ga2O3 254 100 2.3×104 0.03 0.9×1011 [44]
    CuCrO2/Ga2O3 254 18 3.5×104 0.12 4.6×1011 [44]
    FTO/TiO2/Si-doped Ga2O3/TFB/PEDOT:PSS 254 390 242.56 1.02 0.46×1011 [45]
    下载: 导出CSV
  • [1]

    Xi Z Y, Liu Z, Yang L L, Tang K, Li L, Shen G H, Zhang M L, Li S, Guo Y F, Tang W H 2023 ACS Appl. Mater. Interfaces 15 40744Google Scholar

    [2]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photon. 4 2937Google Scholar

    [3]

    Tang X, Li K H, Zhao Y, Sui Y, Liang H, Liu Z, Liao C H, Babatain W, Lin R, Wang C, Lu Y, Alqatari F S, Mei Z, Tang W, Li X 2021 ACS Appl. Mater. Interfaces 14 1304

    [4]

    Wang Y H, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W H, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [5]

    Imura S, Mineo K, Miyakawa K, Nanba M, Ohtake H, Kubota M 2018 IEEE Sensors J. 18 3108Google Scholar

    [6]

    Sorifi S, Kaushik S, Sheoran H, Singh R 2022 J. Phys. D: Appl. Phys. 55 365105Google Scholar

    [7]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [8]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [9]

    Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O 2004 IEEE J. Select. Topics Quantum Electron. 10 742Google Scholar

    [10]

    Xu Z, Zang J, Yang X, Chen Y, Lou Q, Li K, Lin C, Zhang Z, Shan C 2021 Semicond. Sci. Technol. 36 065007Google Scholar

    [11]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [12]

    Li L, Liao F, Hu X 2020 Superlattices Microstruct. 141 106502Google Scholar

    [13]

    Jing L, Ai C, Guo X, Cao J, Jing D, Luo B, Ma L 2023 Ind. Eng. Chem. Res. 62 6103Google Scholar

    [14]

    Moon S, Bae J, Kim J 2022 J. Mater. Chem. C 10 6281Google Scholar

    [15]

    Lu C, Gao L, Meng F, Zhang Q, Yang L, Liu Z, Zhu M, Chen X, Lyu X, Wang Y, Liu J, Ji A, Li P, Gu L, Cao Z, Lu N 2023 J. Appl. Phys. 133 045306Google Scholar

    [16]

    Han Y, Jiao S, Jing J, Chen L, Rong P, Ren S, Wang D, Gao S, Wang J 2023 Nano Res. 17 2960Google Scholar

    [17]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2016 J. Am. Chem. Soc. 139 482Google Scholar

    [18]

    Qasrawi A F 2005 Cryst. Res. Technol. 40 610Google Scholar

    [19]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [20]

    Yuan X, Tang L, Liu S, Wang P, Chen Z, Zhang C, Liu Y, Wang W, Zou Y, Liu C, Guo N, Zou J, Zhou P, Hu W, Xiu F 2015 Nano Lett. 15 3571Google Scholar

    [21]

    Ben Aziza Z, Henck H, Pierucci D, Silly M G, Lhuillier E, Patriarche G, Sirotti F, Eddrief M, Ouerghi A 2016 ACS Nano 10 9679Google Scholar

    [22]

    Parlak M, Qasrawi A F, Ercelebi C 2003 Mater. Sci. 38 1507Google Scholar

    [23]

    Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L, Tang W 2020 J. Mater. Chem. C 8 4502Google Scholar

    [24]

    Mudiyanselage D H, Wang D, Fu H 2022 IEEE J. Electron Devices Soc. 10 89Google Scholar

    [25]

    Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [26]

    Abdullah M M, Bhagavannarayana G, Wahab M A 2010 J. Cryst. Growth 312 1534Google Scholar

    [27]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [28]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [29]

    Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q, Xu S, Zhang Y, Zhang J, Hao Y, Zhang C 2019 IEEE Photon. J. 11 1Google Scholar

    [30]

    He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B 2019 Phys. Status Solidi. (a) 217 1900861Google Scholar

    [31]

    Yakimov E B, Polyakov A Y, Shchemerov I V, Smirnov N B, Vasilev A A, Vergeles P S, Yakimov E E, Chernykh A V, Shikoh A S, Ren F, Pearton S J 2020 APL Mater. 8 111105Google Scholar

    [32]

    Bae J, Park J H, Jeon D W, Kim J 2021 APL Mater. 9 101108Google Scholar

    [33]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [34]

    Chen M, Zhang Z, Lv Z, Zhan R, Chen H, Jiang H, Chen J 2022 ACS Appl. Nano Mater. 5 351Google Scholar

    [35]

    Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari R 2016 J. Phys. : Condens. Matter 28 224005Google Scholar

    [36]

    Filippo E, Tepore M, Baldassarre F, Siciliano T, Micocci G, Quarta G, Calcagnile L, Tepore A 2015 Appl. Surf. Sci. 338 69Google Scholar

    [37]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [38]

    Liang S J, Cheng B, Cui X, Miao F 2019 Adv. Mater. 32 1903800Google Scholar

    [39]

    Kumar N, Kumail M, Lee J, Park H G, Kim J 2023 Mater. Res. Bull. 168 112466Google Scholar

    [40]

    Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y, Li X 2018 J. Mater. Chem. C 6 10982Google Scholar

    [41]

    Ma Y, Chen T, Zhang X, Tang W, Feng B, Hu Y, Zhang L, Zhou X, Wei X, Xu K, Mudiyanselage D, Fu H, Zhang B 2022 ACS Appl. Mater. Interfaces 14 35194Google Scholar

    [42]

    Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X, Long S 2021 Adv. Opt. Mater. 9 2100173Google Scholar

    [43]

    Park S, Park T, Park J H, Min J Y, Jung Y, Kyoung S, Kang T Y, Kim K H, Rim Y S, Hong J 2022 ACS Appl. Mater. Interfaces 14 25648Google Scholar

    [44]

    Wu C, Qiu L, Li S, Guo D, Li P, Wang S, Du P, Chen Z, Liu A, Wang X, Wu H, Wu F, Tang W 2021 Mater. Today Phys. 17 100335Google Scholar

    [45]

    Nguyen T M H, Tran M H, Bark C W 2023 ACS Appl. Electronic Mater. 5 6459Google Scholar

    [46]

    Wang Y, Tang Y, Li H, Yang Z, Zhang Q, He Z, Huang X, Wei X, Tang W, Huang W, Wu Z 2021 ACS Photon. 8 2256Google Scholar

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [4] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [5] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [6] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [7] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [8] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [9] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [10] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [11] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [12] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [13] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [14] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [15] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [16] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [19] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  706
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-16
  • 修回日期:  2024-04-14
  • 上网日期:  2024-04-17
  • 刊出日期:  2024-06-05

/

返回文章
返回