搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿基三结叠层太阳电池的研究进展

许畅 郑德旭 董心睿 吴飒建 武明星 王开 刘生忠

引用本文:
Citation:

钙钛矿基三结叠层太阳电池的研究进展

许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠

Research progress of perovskite-based triple-junction tandem solar cells

Xu Chang, Zheng De-Xu, Dong Xin-Rui, Wu Sa-Jian, Wu Ming-Xing, Wang Kai, Liu Sheng-Zhong (Frank)
PDF
HTML
导出引用
  • 单结太阳电池的能量转换效率受限于Shockley-Queisser理论极限, 而突破该极限的最有效策略是构建多结叠层太阳电池. 多结叠层太阳电池通过堆叠多个子电池, 可针对太阳光谱的特定部分进行优化. 钙钛矿材料具有连续可调的能带结构, 为多结叠层电池中的吸光材料组合提供了新的选项. 在钙钛矿基叠层太阳电池领域, 三结叠层太阳电池已经取得了一定进展, 在光伏产业中展现出巨大潜力. 本文首先重点介绍了三结叠层太阳能器件结构及面临的科学问题, 然后介绍了钙钛矿基三结叠层电池的研究进展, 包括钙钛矿/钙钛矿/硅叠层电池、钙钛矿/钙钛矿/有机叠层电池和全钙钛矿叠层电池. 最后, 本文分析了进一步提升三结叠层太阳电池性能的研究方向, 为制备高效三结电池提供了指导.
    The energy conversion efficiency of single-junction solar cells is limited by the Shockley-Queisser theory and the most effective strategy to break through this limit is to fabricate multi-junction tandem solar cells. Perovskite materials provide a continuously tunable energy band structure, offering a new option for light-absorbing materials in multi-junction tandem cells. In the field of perovskite-based multi-junction tandem solar cells, triple-junction tandem solar cells have demonstrated great potential. The present paper introduces the configuration of triple-junction solar cells and its facing three scientific challenges. 1) Ensuring energy level alignment among sub-cells is a critical concern for three-junction batteries. Specifically, the top wide-band gap sub-cell must possess a band gap ranging from 1.8 to 2.2 eV; however, current perovskite material systems with wide-band gaps exhibit certain defects. 2) It is essential to achieve current matching in multi-junction tandem solar cells while optimizing the absorption layer and minimizing parasitic absorption in order to maximize the current output of solar cells. 3) The functional layers of multi-junction tandem solar cells are stacked sequentially using different deposition methods, which imposes higher compatibility requirements on the intermediate interconnect layers. Subsequently, the research progress of perovskite-based triple-junction tandem solar cells is introduced, including perovskite/perovskite/silicon tandem solar cells, perovskite/perovskite/organic tandem solar cells, and all-perovskite tandem solar cells. Their respective highest efficiencies are 19.4%, 23.87%, and 27.1%. Finally, this paper explores the research directions for further improving the performance of triple-junction solar cells. In addition to improving energy conversion efficiency, perovskite-based solar cells must also solve the stability problems in order to achieve future commercialization, and provide guidance for the development of efficient triple-junction cells.
  • 图 1  (a) 三结叠层太阳电池光响应原理; (b) 三结钙钛矿基叠层太阳电池效率演变; (c) 三结钙钛矿基叠层太阳电池结构示意图

    Fig. 1.  (a) Principle of light response of triple-junction tandem solar cells; (b) PCE evolution of triple-junction tandem solar cells; (c) schematic illustration of the triple-junction perovskite based tandem solar cells.

    图 2  (a) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的EQE曲线[6]; (b) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的J-V曲线[6]; (c) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的EQE曲线[6]; (d) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的J-V曲线[6]

    Fig. 2.  (a) EQE curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (b) J-V curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (c) EQE curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6]; (d) J-V curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6].

    图 3  (a) 叠层太阳电池结构及横截面SEM图像[74]; (b) 子电池及叠层太阳电池J-V曲线[75]; (c) 全钙钛矿叠层太阳电池结构[77]; (d) 叠层太阳电池在暗态和光照下的J-V曲线[76]; (e) 钙钛矿前驱体结晶过程示意图[79]; (f) 钙钛矿的相偏析抑制机制示意图[78]

    Fig. 3.  (a) Schematic structure of tandem solar cells and cross sectional SEM image[74]; (b) J-V curves of sub-cells and three-junction tandem solar cell[75]; (c) schematic structure of all perovskite triple-junction tandem solar cells[77]; (d) J-V curves of tandem solar cells in dark state and light[76]; (e) schematics of perovskite precursors during the crystallization process[79]; (f) schematic illustration of the suppression mechanism of light-induced phase segregation[78].

    图 4  (a) 叠层太阳电池结构及截面SEM图像[67]; (b) 叠层太阳电池结构及截面SEM图像[80]; (c) 性能最佳的叠层太阳电池J-V曲线, 插图为叠层太阳电池结构示意图[69]; (d) 反溶剂沉积方法和气淬技术制备的钙钛矿电池横截面SEM图像[81]

    Fig. 4.  (a) Schematic structure of tandem solar cells and cross sectional SEM images[67]; (b) schematic structure of tandem solar cells and cross sectional SEM images[80]; (c) J-V curve of the champion tandem solar cell, illustrated with schematic structure of the tandem solar cell [69]; (d) cross sectional SEM image of perovskite cell prepared by anti-solvent dripping and gas quenching method[81].

    图 5  (a) 添加剂工程工作机理示意图[82]; (b) 宽带隙钙钛矿混合相和分离相示意图[83]; (c) 薄膜的XRD图[84]; (d) 经认证的叠层太阳电池J-V曲线[85]

    Fig. 5.  (a) Schematic diagram of the working mechanism of additive engineering[82]; (b) illustration of the mixed-phase and segregated-phase of wide-bandgap perovskites[83]; (c) XRD pattern of film[84]; (d) certified tandem solar cells J-V curves[85].

    表 1  单片三结钙钛矿基叠层太阳电池光伏性能汇总表

    Table 1.  Summaries for PV performance of monolithic triple-junction perovskite-based tandem solar cells.

    类型 宽带隙 中间带隙 窄带隙 开路
    电压
    (V)
    短路
    电流
    密度
    (mA/cm2)
    填充
    因子
    (%)
    正扫/
    反扫
    效率
    (%)
    认证
    效率
    (%)
    面积
    (cm2)
    Ref.
    钙钛矿/
    钙钛矿/
    有机
    Cs0.15MA0.15FA0.70Pb
    (I0.15Br0.85)3
    (2.05 eV)
    Cs0.15MA0.15
    FA0.70Pb
    (I0.85Br0.15)3
    (1.62 eV)
    PM6:BTP
    -eC9:PCBM
    (1.33 eV)
    3.03 9.1 70.4 19.4 \ 0.1 [74]
    \ \ \ 19.2
    钙钛矿/
    钙钛矿/
    钙钛矿
    FA0.83Cs0.17Pb
    (Br0.7I0.3)3
    (1.94 eV)
    MAPbI3
    (1.57 eV)
    MAPb0.75
    Sn0.25I3
    (1.34 eV)
    2.7 8.3 0.43 6.7 \ 0.092 [75]
    \ \ \ \
    Cs0.1(FA0.66MA0.34)0.9
    PbI2Br
    (1.73 eV)
    FA0.66MA0.34
    PbI2.85Br0.15
    (1.57 eV)
    FA0.66MA0.34
    Pb0.5Sn0.5I3
    (1.23eV)
    2.78 7.4 81 17.3 \ 0.067 [76]
    2.78 7.42 82 17.0
    Cs0.2FA0.8PbI0.9Br2.1
    (1.99 eV)
    Cs0.05FA0.95Pb
    I2.55Br0.45
    (1.60 eV)
    MA0.3FA0.7
    Pb0.5
    Sn0.5I3
    (1.22 eV)
    2.80 8.8 81 20.1 \ 0.049 [77]
    2.793 8.8 80.7 19.9
    Rb0.15Cs0.85PbI1.75Br1.25
    (2.0 eV)
    Cs0.05FA0.9
    MA0.05Pb(I0.9
    Br0.1)3
    (1.60 eV)
    Cs0.05FA0.7
    MA0.25Pb0.5
    Sn0.5
    I3-0.05SnF2
    (1.22 eV)
    3.215 9.71 77.93 24.33 23.29 0.049 [78]
    3.210 9.63 78.67 24.32
    Cs0.15FA0.85Pb
    (I0.4Br0.6)3
    (1.97 eV)
    Cs0.05FA0.9MA0.05Pb(I0.85
    Br0.15)3
    (1.77 eV)
    Cs0.05FA0.7
    MA0.25Pb0.5
    Sn0.5I3
    (1.22 eV)
    3.33 9.7 78 25.1 23.87 0.049 [79]
    \ \ \ \
    钙钛矿/
    钙钛矿/
    CsFAPbIBr
    (1.8 eV)
    CsFAPbIBr
    (1.53 eV)
    Si
    (1.10 eV)
    2.688 7.7 68.0 14.0 \ 1.42 [67]
    2.692 7.7 58.7 12.1
    Cs0.2FA0.8Pb
    (I0.45Br0.55)3
    (1.90 eV)
    Cs0.1FA0.9PbI3
    (1.55 eV)
    Si
    (1.10 eV)
    2.74 8.54 86.0 20.1 \ 1.03 [80]
    \ \ \ \
    MAPb(I0.5Br0.35Cl0.15)3
    (1.96 eV)
    Cs0.2MA0.05
    FA0.75PbI3
    (1.56 eV)
    Si
    (1.10 eV)
    2.78 10.18 78.60 22.23 \ 0.1875 [69]
    2.78 10.19 76.90 21.79
    Cs0.05(FA0.55MA0.45)0.95
    Pb(I0.55Br0.45)3
    (1.83 eV)
    Cs0.05(FA0.9
    MA0.1)0.95Pb
    (I0.95Br0.05)3
    (1.56 eV)
    Si
    (1.10 eV)
    2.87 8.9 78.1 20.1 \ 1.0 [81]
    2.86 8.9 77.9 20.0
    Cs0.1FA0.9PbBr2.1I0.9
    (1.98 eV)
    Rb0.05Cs0.1
    FA0.85PbI3
    (1.52 eV)
    Si
    (1.10 eV)
    3.04 11.9 72.9 26.4 \ 1.0 [82]
    3.01 11.9 71.1 25.5
    Rb0.05Cs0.12FA0.83PbI0.95
    Cl0.05Br2
    (1.98 eV)
    Cs0.05(FA0.98
    MA0.02)0.95Pb
    (I0.98Br0.02)3
    (1.55 eV)
    Si
    (1.10 eV)
    2.995 11.76 70.80 25.0 24.19 1.04 [83]
    2.980 11.73 68.4 23.9
    FA0.8Cs0.2Pb(I0.5Br0.5)3
    (1.84 eV)
    FAPbI3
    (1.52 eV)
    Si
    (1.10 eV)
    2.84 11.6 0.74 24.4 \ 1.0 [84]
    2.86 11.5 0.73 24.0
    FA0.60MA0.15Cs0.25Pb
    (I0.45Br0.5OCN0.05)3
    (1.93 eV)
    FA0.9Cs0.1
    PbI3
    (1.55 eV)
    Si
    (1.10 eV)
    3.132 11.58 76.15 27.62 27.1 1.0 [85]
    \ \ \ \
    下载: 导出CSV

    表 2  单节宽带隙钙钛矿太阳电池光伏性能汇总表

    Table 2.  Summary of photovoltaic performance of single wide-band gap perovskite solar cells.

    组分 禁带
    宽度/eV
    开路电压/V 短路电流密度
    /(mA·cm–2)
    填充因子/% 能量转换
    效率/%
    Ref.
    Cs0.15MA0.15FA0.70Pb(I0.15Br0.85)3 2.05 1.27 9.4 70.4 8.4 [74]
    FA0.83Cs0.17Pb(Br0.7I0.3)3 1.94 1.28 11.9 76.0 11.6 [75]
    Cs0.2FA0.8PbI0.9Br2.1 1.73 1.07 9.9 76.0 8.1 [76]
    Cs0.2FA0.8PbI0.9Br2.1 1.99 1.262 11.2 73.5 10.4 [77]
    Rb0.15Cs0.85PbI1.75Br1.25 2.0 1.30 12.4 84.7 13.6 [78]
    Cs0.15FA0.85Pb(I0.4Br0.6)3 1.97 1.44 12.8 83.0 15.3 [79]
    CsFAPbIBr 1.8 \ \ \ \ [67]
    Cs0.2FA0.8Pb(I0.45Br0.55)3 1.90 1.09 11.7 71 9.1 [80]
    MAPb(I0.5Br0.35Cl0.15)3 1.96 1.28 14.16 76.6 13.88 [74]
    Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 1.83 1.12 13.6 74.6 11.3 [81]
    Cs0.1FA0.9PbBr2.1I0.9 1.98 1.38 14.0 76.6 15.0 [82]
    Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 1.98 1.33 13.05 76.7 13.4 [83]
    FA0.8Cs0.2Pb(I0.5Br0.5)3 1.84 1.27 16.4 77.0 16.0 [84]
    FA0.60MA0.15Cs0.25Pb(I0.45Br0.5OCN0.05)3 1.93 1.422 14.18 83.79 16.9 [85]
    下载: 导出CSV
  • [1]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [2]

    Luo X H, Liu X, Lin X S, Wu T H, Wang Y B, Han Q F, Wu Y Z, Segawa H, Han L Y 2024 ACS Energy Lett. 9 1487Google Scholar

    [3]

    Liao J F, Wu W Q, Jiang Y, Zhong J X, Wang L Z, Kuang D B 2020 Chem. Soc. Rev. 49 354Google Scholar

    [4]

    NREL, Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell- -efficiency.html [2024-11-08]

    [5]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860Google Scholar

    [6]

    Hörantner M T, Leijtens T, Ziffer M E, Eperon G E, Christoforo M G, Mcgehee M D, Snaith H J 2017 ACS Energy Lett. 2 2506Google Scholar

    [7]

    Wang Y, Ye S Y, Lim J W M, Giovanni D, Feng M J, Fu J H, Krishnamoorthy H N S, Zhang Q N, Xu Q, Cai R, Sum T C 2023 Nat. Commun. 14 6293Google Scholar

    [8]

    Marchat C, Williams R M 2024 Photochem. Photobiol. Sci. 23 1Google Scholar

    [9]

    Bremner S P, Levy M Y, Honsberg C B 2008 Prog. Photovoltaics 16 225Google Scholar

    [10]

    Yang J M, Bao Q Y, Shen L, Ding L M 2020 Nano energy 76 105019Google Scholar

    [11]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar

    [12]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [13]

    Yeom K M, Kim S U, Woo M Y, Noh J H, Im S H 2020 Adv. Mater. 32 2002228Google Scholar

    [14]

    张云龙, 陈新亮, 周忠信, 赵颖, 张晓丹 2021 太阳能学报 42 49

    Zhang Y L, Chen X L, Zhou Z X, Zhao Y, Zhang X D 2021 Acta Energiae Solaris Sin. 42 49

    [15]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar

    [16]

    Zhang Z C, Chen W J, Jiang X X, Cao J L, Yang H D, Chen H Y, Yang F, Shen Y X, Yang H Y, Cheng Q R, Chen X N, Tang X H, Kang S Q, Ou X M, Brabec C J, Li Y W, Li Y F 2024 Nat. Energy 9 592Google Scholar

    [17]

    Wang X, Zhang D, Liu B Z, Wu X, Jiang X F, Zhang S F, Wang Y, Gao D P, Wang L N, Wang H L, Huang Z M, Xie X F, Chen T, Xiao Z G, He Q Y, Xiao S, Zhu Z L, Yang S F 2023 Adv. Mater. 35 2305946Google Scholar

    [18]

    Shen H P, Walter D, Wu Y L, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R 2019 Adv. Energy Mater. 10 1902840

    [19]

    Bastiani M D, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, IsikgorS F H, Liu J, Xu L J, Chen B, Kerschaver E V, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar

    [20]

    Shi Y T, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [21]

    Zhang H, Park N-G 2024 DeCarbon 3 100025Google Scholar

    [22]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, Mcgehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [23]

    Martinho F 2021 Energy Environ. Sci. 14 3840Google Scholar

    [24]

    Cheng Y H, Ding L M 2021 SusMat 1 324Google Scholar

    [25]

    Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W, Dimroth F 2009 Appl. Phys. Lett. 94 223504Google Scholar

    [26]

    Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N Z, Mo D, Zhang Y Z, He F 2020 Joule 4 688Google Scholar

    [27]

    Zhang Z H, Li Z C, Meng L Y, Lien S Y, Gao P 2020 Adv. Funct. Mater. 30 2001904Google Scholar

    [28]

    Tong J H, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232

    [29]

    Montecucco R, Quadrivi E, Po R, Grancini G 2021 Adv. Energy Mater. 11 2100672Google Scholar

    [30]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar

    [31]

    Huang T Y, Tan S, Nuryyeva S, Yavuz I, Babbe F, Zhao Y P, Abdelsamie M, Weber M H, Wang R, Houk K N , Sutter-Fella C M, Yang Y 2021 Sci. Adv. 7 eabj1799

    [32]

    Correa-Baena J-P, Lou Y Q, Brenner T M, Snaider J, Sun S, Li X Y, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [33]

    Enkhbayar E, Otgontamir N, Kim S Y, Lee J, Kim J H 2024 ACS Appl. Mater. Interfaces 16 35084Google Scholar

    [34]

    Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D 2019 Energy Environ. Sci. 12 2778Google Scholar

    [35]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [36]

    Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite A D 2023 Chem. Rev. 123 9565Google Scholar

    [37]

    Li X, Aftab S, Abbas A, Hussain S, Aslam M, Kabir F, Abd-Rabboh H S M, Hegazy H H, Xu F, Ansari M Z 2023 Nano Energy 118 108979Google Scholar

    [38]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [39]

    Dong Z J, Li W P, Wang H L, Jiang X Y, Liu H C, Zhu L Q, Chen H N 2021 Solar RRL 5 2100370Google Scholar

    [40]

    Kerner R A, Xu Z J, Larson B W, Rand B P 2021 Joule 5 2273Google Scholar

    [41]

    Xu J X, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest M F A M, Berry J J, Luther J M, Holman Z C, McGehee M D 2020 Science 367 1097Google Scholar

    [42]

    李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗 2024 太阳能学报 45 30

    Li Z X, Feng X Z, Chen X G, Liu X P, Dai S Y, Cai M L 2024 Acta Energiae Solaris Sin. 45 30

    [43]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar

    [44]

    Walsh A 2015 J. Phys. Chem. C 119 5755

    [45]

    Sala J, Heydarian M, Lammar S, Abdulraheem Y, Aernouts T, Hadipour A, Poortmans J 2021 ACS Appl. Energy Mater. 4 6377Google Scholar

    [46]

    Reza K M, Gurung A, Bahrami B, Chowdhury A H, Ghimire N, Pathak R, Rahman S I, Laskar M A R, Chen K, Bobba R S, Lamsal B S, Biswas L K, Zhou Y, Logue B, Qiao Q 2021 Solar RRL 5 2000740Google Scholar

    [47]

    Zhang S Y, Tang M-C, Fan Y Y, Li R P, Nguyen N V, Zhao K, Anthopoulos T D, Hacker C A 2020 ACS Appl. Mater. Interfaces 12 34402Google Scholar

    [48]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidamiinov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar

    [49]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, L ouks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y F, Zhu K 2022 Science 378 1295Google Scholar

    [50]

    Jaysankar M, Qiu W, Bastos J, Tait J G, Debucquoy M, Paetzold U W, Cheyns D, Poortmans J 2016 J. Mater. Chem. A 4 10524Google Scholar

    [51]

    Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y H, Mccarthy M M, Unger E, Getautis V, Widmer‐Cooper A, Herz L M, Snaith H J 2023 Adv. Mater. 35 2211742Google Scholar

    [52]

    An Y D, Zhang N, Zeng Z X, Cai Y T, Jiang W L, Qi F, Ke L Y, Lin F R, Tsang S W, Shi T T, Jen A K Y, Yip H L 2024 Adv. Mater. 36 2306568Google Scholar

    [53]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [54]

    Kim D H, Muzzillo C P, Tong J H, Palmstrom A F, Larson B W, Choi C, Harvey S P, Glynn S, Whitaker J B, Zhang F, Li Z, Lu H P, Van Hest M F A M, Berry J J, Mansfield L M, Huang Y, Yan Y F, Zhu K 2019 Joule 3 1734Google Scholar

    [55]

    Thiesbrummel J, Peña-Camargo F, Brinkmann K O, Gutierrez-Partida E, Yang F J, Warby J, Albrecht S, Neher D, Riedl T, Snaith H J, Stolterfoht M, Lang F 2023 Adv. Energy Mater. 13 2202674Google Scholar

    [56]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [57]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280Google Scholar

    [58]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A U, Van Kerschaver E, Baran D, Mcculloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, Wolf S D 2021 Joule 5 1566Google Scholar

    [59]

    Yu Y, Liu R, Liu C, Shi X L, Yu H, Chen Z G 2022 Adv. Energy Mater. 12 2201509Google Scholar

    [60]

    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F, Mcgehee M D 2018 ACS Energy Lett. 3 2694Google Scholar

    [61]

    Caprioglio P, Smith J A, Oliver R D J, Dasgupta A, Choudhary S, Farrar M D, Ramadan A J, Lin Y H, Greyson Christoforo M, Ball J M, Diekmann J, Thiesbrummel J, Zaininger K A, Shen X Y, Johnston M B, Neher D, Stolterfoht M, Snaith H J 2023 Nat. Commun. 14 932Google Scholar

    [62]

    Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J 2016 Science 354 861Google Scholar

    [63]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 05881

    [64]

    Hossain M I, Saleque A M, Ahmed S, Saidjafarzoda I, Shahiduzzaman M, Qarony W, Knipp D, Biyikli N, Tsang Y H 2021 Nano Energy 79 105400Google Scholar

    [65]

    Shao Y F, Zheng D X, Liu L, Liu J S, Du M Y, Peng L, Wang K, Liu S Z 2024 ACS Energy Lett. 9 4892Google Scholar

    [66]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [67]

    Werner J, Sahli F, Fu F, Leon D J J, Walter A, Kamino B A, Niesen B, Nicolay S, Jeangros Q, Ballif C 2018 ACS Energy Lett. 3 2052Google Scholar

    [68]

    Nejand A B, Ritzer D B, Hu H, Schackmar F, Moghadamzadeh S, Feeney T, Singh R, Laufer F, Schmager R, Azmi R, Kaiser M, Abzieher T, Gharibzadeh S, Ahlswede E, Lemmer U, Richards B S, Paetzold U W 2022 Nat. Energy 7 620Google Scholar

    [69]

    Choi Y J, Lim S Y, Park J H, Ji S G, Kim J Y. 2023 ACS Energy Lett. 8 3141Google Scholar

    [70]

    Zhu Z J, Mao K T, Xu J X 2021 J. Energy Chem. 58 219Google Scholar

    [71]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [72]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-Toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280Google Scholar

    [73]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar

    [74]

    Isikgor F H, Maksudov T, Chang X, Adilbekva B, Ling Z H, Hadmojo W T, Lin Y B, Anthopoulos T D 2022 ACS Energy Lett. 7 4469Google Scholar

    [75]

    Mcmeekin D P, Mahesh S, Noel N K, Klug M T, Lim J C, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [76]

    Wang J K, Zardetto V, Datta K, Zhang D, Wienk M M, Janssen R A J 2020 Nat. Commun. 11 5254Google Scholar

    [77]

    Xiao K, Wen J, Han L, Lin R X, Gao Y, Gu S, Zang Y P, Nie Y F, Zhu J, Xu J, Tan H R 2020 ACS Energy Lett. 5 2819Google Scholar

    [78]

    Wang Z W, Zeng L W, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C W, Maxwell A, Ugur E, Reis R D, Cheng M, Yang G, Subedi B, Luo D Y, Hu J H, Wang J K, Teale S, Mahesh S, Wang S S, Hu S Y, Jung E D, Wei M Y, Park S M, Grater L, Aydin E, Song Z N, Podraza N J, Lu Z H, Huang J S, Dravid V P, Wolf D S, Yan Y F, Grätzel M, Kanatzidis M G, Sargent E H 2023 Nature 618 74Google Scholar

    [79]

    Wang J K, Zeng L W, Zhang D, Maxwell A, Chen H, Datta K, Caiazzo A, Remmerswaal W H M, Schipper N R M, Chen Z H, Ho K, Dasgupta A, Kusch G, Ollearo R, Bellini L, Hu S F, Wang Z W, Li C W, Teale S, Grater L, Chen B, Wienk M M, Oliver R A, Snaith H J, Janssen R A J, Sargent E H 2023 Nat. Energy 9 70Google Scholar

    [80]

    Zheng J H, Wang G L, Duan W Y, Mahmud M A, Yi H M, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar

    [81]

    Heydarian M, Heydarian M, Bett A J, Bivour M, Schindler F, Hermle M, Schubert M C, Schulze P S C, Borchert J, Glunz S W 2023 ACS Energy Lett. 8 4186Google Scholar

    [82]

    Xu F Z, Aydin E, Liu J, Ugur E, Harrison G T, Xu L J, Vishal B, Yildirim B K, Wang M C, Ali R, Subbiah A S, Yazmaciyan A, Zhumagali S, Yan W B, Gao Y J, Song Z M, Li C W, Fu S, Chen B, UR Rehman A U, Babics M, Razzaq A, Bastiani D M, Allen T G, Schwiingenschlögl U, Yan Y F, Lquai F, Sargent E H, Wolf S D 2024 Joule 8 224Google Scholar

    [83]

    Li F M, Wu D, Shang L, Xia R, Zhang H R, Huang Z X, Gong J, Mao L, Zhang H, SUN Y Q, Yang T, Sun X G, Feng Z Q, Liu M Z 2024 Adv. Mater. 36 2311595Google Scholar

    [84]

    Hu H, An S X, Li Y, Orooji S, Singh R, Schackmar F, Laufer F, Jin Q H, Feeney T, Diercks A, Gota F, Moghadamzadeh S, Pan T, Rienäcker M, Peibst R, Nejand B A, Paetzold U W 2024 Energy Environ. Sci. 17 2800Google Scholar

    [85]

    Liu S C, Lu Y, Yu C, Li J, Luo R J, Guo R, Liang H M, Jia X K, Guo X, Wang Y D, Zhou Q L, Wang X, Yang S F, Sui M L, Müller-Buschbaum P, Hou Y 2024 Nature 628 306Google Scholar

    [86]

    Guo Y X, Du S J, Hu X Z, Li G, Yu Z X, Guan H L, Wang S X, Jia P, Zhou H, Li C, Ke W J, Fang G J 2024 Nano Energy 126 109612Google Scholar

    [87]

    苏诗茜, 应智琴, 陈邢凯, 李鑫, 杨熹, 叶继春 2024 太阳能学报 45 23

    Su S Q, Ying Z Q, Chen X K, Li X, Yang X, Ye J C 2024 Acta Energiae Solaris Sin. 45 23

    [88]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [89]

    Yang H D, Chen W J, Yu Y, Shen Y X, Yang H Y, Li X Q, Zhang B, Chen H Y, Cheng Q R, Zhang Z C, Qin W, Chen J D, Tang J X, Li Y W, Li Y F 2023 Adv. Mater. 35 2208604Google Scholar

    [90]

    Eggimann H J, Patel J B, Johnston M B, Herz L M 2020 Nat. Commun. 11 5525Google Scholar

    [91]

    An S C, Chen P R, Hou F H, Wang Q, Pan H, Chen X L, Lu X N, Zhao Y, Huang Q, Zhang X D 2020 Solar Energy 196 409Google Scholar

    [92]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Ed. 62 e202216668Google Scholar

    [93]

    Luo X H, Wu T H, Wang Y B, Lin X S, Su H Z, Han Q F, Han L Y 2021 Sci. China Chem. 64 218Google Scholar

    [94]

    Reichmuth S K, Siefer G, Schachtner M, Mühleis M, Hohl-Ebinger J, Glunz S W 2020 IEEE J. Photovoltaics 10 1076Google Scholar

  • [1] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 物理学报, doi: 10.7498/aps.73.20240561
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, doi: 10.7498/aps.72.20230357
    [3] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, doi: 10.7498/aps.72.20222019
    [4] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, doi: 10.7498/aps.70.20202016
    [5] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, doi: 10.7498/aps.69.20200822
    [6] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, doi: 10.7498/aps.68.20191042
    [7] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, doi: 10.7498/aps.67.20171956
    [8] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, doi: 10.7498/aps.67.20172779
    [9] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, doi: 10.7498/aps.64.038404
    [10] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, doi: 10.7498/aps.64.038805
    [11] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, doi: 10.7498/aps.63.218801
    [12] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, doi: 10.7498/aps.63.028803
    [13] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, doi: 10.7498/aps.62.036102
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, doi: 10.7498/aps.62.198801
    [15] 於黄忠. 有机共混结构叠层太阳电池的研究进展. 物理学报, doi: 10.7498/aps.62.027201
    [16] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, doi: 10.7498/aps.61.168201
    [17] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, doi: 10.7498/aps.60.038401
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, doi: 10.7498/aps.54.1919
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, doi: 10.7498/aps.54.5943
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, doi: 10.7498/aps.54.53
计量
  • 文章访问数:  215
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-10-30
  • 上网日期:  2024-11-13

/

返回文章
返回