搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双修饰策略制备高性能反式钙钛矿太阳能电池

张晓春 王立坤 商文丽 万政慧 岳鑫 杨华翼 李婷 王辉

引用本文:
Citation:

基于双修饰策略制备高性能反式钙钛矿太阳能电池

张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉
cstr: 32037.14.aps.73.20241238

Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy

Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui
cstr: 32037.14.aps.73.20241238
PDF
HTML
导出引用
  • 反式(p-i-n)钙钛矿太阳能电池(PSCs)因其具有转化效率高、稳定性好等优点受到越来越多的关注. 制约反式钙钛矿电池效率提升的主要因素是钙钛矿层和电荷传输层之间的界面缺陷. 因此, 本文基于1, 3-二氨基丙烷二氢碘(PDADI)双修饰策略钝化钙钛矿薄膜与电荷传输层界面缺陷, 提高了钙钛矿薄膜成膜质量, 抑制了钙钛矿薄膜与电荷传输层之间的非辐射复合, 制备了转化效率为23.19%的反式钙钛矿太阳能电池, 为制备高效反式钙钛矿太阳能电池提供了一种有效策略.
    Inverted (p-i-n) perovskite solar cells (PSCs) are receiving increasing attention due to their high conversion efficiency and good stability. The main factor restricting the efficiency improvement of inverted perovskite cells is the interface defect between the perovskite layer and the charge transport layers. Therefore, the dual modification strategy of 1, 3-diaminopropane dihydroiodide (PDADI) passivates the interface defects between perovskite films and charge transport layers, improves the quality of perovskite film formation, suppresses non radiative recombination between perovskite films and charge transport layers as well as improved charge carrier transport, and results in a conversion efficiency of 23.19%. Furthermore, the unencapsulated PSCs with PDADI dual modification also exhibit good storage stability, with efficiency remaining at 96% of initial efficiency after 600 hours of storage at a temperature of 25 ℃ and humidity below 20%. Therefore, PDADI dual modification provides an effective strategy for fabricating high-efficiency and stable inverted perovskite solar cells.
      通信作者: 李婷, tingli430@lnnu.edu.cn ; 王辉, hwang1606@dicp.ac.cn
    • 基金项目: 辽宁省科技厅博士启动基金(批准号: 2021-BS-200)资助的课题.
      Corresponding author: Li Ting, tingli430@lnnu.edu.cn ; Wang Hui, hwang1606@dicp.ac.cn
    • Funds: Project supported by the Doctor Foundation of Science and Technology Department of Liaoning Province, China (Grant No. 2021-BS-200).
    [1]

    Zhou Q S, Liu X X, Liu Z H, Zhu Y Q, Lu J F, Chen Z M, Li C J, Wang J, Xue Q F, He F F, Liang J, Li H Y, Wang S H, Tai Q D, Zhang Y Q, Liu J H, Zuo C T, Ding L M, Xiong Z H, Zheng R H, Zhang H M, Zhao P J, Jin X, Wu P F, Zhang F, Jiang Y, Zhou H P, Hu J S, Wang Y, Song Y L, Mai Y H, Xu B M, Liu S Z, Han L Y, Chen W 2024 Mater. Futures 3 022102Google Scholar

    [2]

    Luo X H, Lin X S, Gao F, Zhao Y, Li X D, Zhan L Q, Qiu Z X, Wang J, Chen C, Meng L, Gao X F, Zhang Y, Huang Z J, Fan R D, Liu H F, Chen Y R, Ren X X, Tang J H, Chen C H, Yang D, Tu Y G, Liu X, Liu D X, Zhao Q, You J B, Fang J F, Wu Y Z, Han H W, Zhang X D, Zhao D W, Huang F Z, Zhou H P, Yuan Y B, Chen Q, Wang Z K, Liu S Z, Zhu R, Nakazaki J, Li Y F, Han L Y 2022 Sci. China Chem. 65 2369Google Scholar

    [3]

    Fei C B, Li N X, Wang M R, Wang X M, Gu H Y, Chen B, Zhang Z, Ni Z Y, Jiao H Y, Xu W Z, Shi Z F, Yan Y F, Huang J S 2023 Science 380 823Google Scholar

    [4]

    Tan Q, Li Z N, Luo G F, Zhang X S, Che B, Chen G C, Gao H, He D, Ma G Q, Wang J F, Xiu J W, Yi H Q, Chen T, He Z B 2023 Nature 620 545Google Scholar

    [5]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar

    [6]

    Li Z, Li B, Wu X, Sheppard S A, Zhang S F, Gao D P, Long N J, Zhu Z L 2022 Science 376 416Google Scholar

    [7]

    Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar

    [8]

    Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar

    [9]

    Wang H F, Su S J, ChenY T, Ren M, Wang S W, Wang Y, Zhu C, Miao Y F, Ouyang C Y, Zhao Y X 2024 Nature 634 1091Google Scholar

    [10]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X, Li S, Gong J Q, Luther J M, Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [11]

    Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A S R, Zhu H H, Grater L, Hadke S S, Huang C Y, Sangwan V K, Cai T, Shin D, Chen L X, Hersam M C, Mirkin C A, Chen B, Kanatzidis M G, Sargent E H 2023 Science 382 810Google Scholar

    [12]

    Degani M, An Q Z, Albaladejo-Siguan M, Hofstetter Y J, Cho C, Paulus F, Grancini G, Vaynzol Y 2021 Sci. Adv. 7 7930Google Scholar

    [13]

    Zhang X, Qiu W M, Apergi S, Singh S, Marchezi P, Song W Y, Sternemann C, Elkhouly K, Zhang D, Aguirre A, Merckx T, Krishna A, Shi Y Y, Bracesco A, Helvoirt C V, Bens F, Zardetto V, D’Haen J, Yu A R, Brocks G, Aernouts T, Moons E, Tao S X, Zhan Y Q, Kuang Y H, Poortmans J 2023 ACS Energy Lett. 8 2532Google Scholar

    [14]

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar

    [15]

    Li Y, Wang Y H, Xu Z C, Peng B, Li X F 2024 ACS Nano 18 10688Google Scholar

    [16]

    Zhang J, Zheng X X, Cui Q Y, Yao Y Y, Su H, She Y T, Zhu Y J, Li D, Liu S Z 2024 Adv. Funct. Mater. 34 2404816Google Scholar

    [17]

    Zhao C X, Zhang Q, Lyu Y, Liu J, Shen F, Liu H J, Kong H, Han H F, Krishna A, Xu J, Zhang H, Yao J X 2024 Adv. Funct. Mater. 34 2404099Google Scholar

    [18]

    Cao Y, Yan N, Wang M Z, Qi D Y, Zhang J F, Chen X, Qin R, Xiao F W, Zhao G T, Liu Y C, Cai X D, Zhao K, Liu S Z, Feng J S 2024 Angew. Chem. Int. Ed. 63 202404401Google Scholar

    [19]

    Uddin M A, Rana P J S, Ni Z Y, Yang G, Li M Z, Wang M R, Gu H Y, Zhang H K, Dou B D, Huang J S 2024 Nat. Commun. 15 1355Google Scholar

    [20]

    Liu S W, Guan X Y, Xiao W S, Chen R, Zhou J, Ren F M, Wang J N, Chen W T, Li S B, Qiu L B, Zhao Y, Liu Z H, Chen W 2022 Adv. Funct. Mater. 32 2205009Google Scholar

    [21]

    Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Obadiah G, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K 2021 Chem 7 774Google Scholar

    [22]

    Chen H, Maxwell A, Li C W, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J K, Wang Z W, Zeng L W, Park S M, Chen L, Serles P, Awni R A, Subedi B, Zheng X P, Xiao C X, Podraza N J, Filleter T, Liu C, Yang Y, Luther J M, Wolf S D, Kanatzidis M G, Yan Y F, Sargent E H 2023 Nature 613 676Google Scholar

    [23]

    Lan Z R, Wang Y D, Shao J Y, Ma D X, Liu Z H, Li D M, Hou Y, Yao J N, Zhong Y W 2024 Adv. Funct. Mater. 34 2312426Google Scholar

    [24]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [25]

    Wang Y T, Lin J Y, He Y L, Yi Zhang Y, Qiong L Q, Liu F Z, Zhou Z W, Chan C C S, Gang Li G, Feng S P, Ng A M C, Wong K S, Popovi´c J, Djuriši´ A B 2022 Sol. RRL 6 2200224Google Scholar

    [26]

    Fu Y, Liu X C, Zhao S S 2022 Chem. Nano. Mat. 8 202200091Google Scholar

    [27]

    Han Q F, Bae S H, Sun P Y, Hsieh Y H, Yang Y, Rim Y S, Zhao H X, Chen Q, Shi W Z, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

  • 图 1  钙钛矿薄膜的SEM图 (a)未修饰的钙钛矿薄膜; (b) PDADI修饰NiOx的钙钛矿薄膜; (c) PDADI修饰NiOx和钙钛矿薄膜的形貌图; (d)钙钛矿薄膜晶粒尺寸数量分布柱状图

    Fig. 1.  SEM images of (a) control perovskite film, (b) perovskite film with PDADI single-modification, (c) perovskite film with PDADI dual-modification; (d) the column chart of corresponding sizes counted by the SEM images.

    图 2  钙钛矿薄膜的AFM图 (a)未修饰的钙钛矿薄膜; (b) PDADI修饰NiOx的钙钛矿薄膜; (c) PDADI修饰NiOx和钙钛矿薄膜的形貌图

    Fig. 2.  AFM images of perovskite film: (a) Control perovskite film; (b) perovskite film with PDADI single-modification; (c) perovskite film with PDADI dual-modification.

    图 3  NiOx及钙钛矿表面的水接触角图 (a)未修饰的NiOx; (b) PDADI修饰的NiOx; (c)未修饰的钙钛矿薄膜; (d) PDADI修饰NiOx的钙钛矿薄膜; (e) PDADI修饰NiOx和钙钛矿的薄膜

    Fig. 3.  Water contact angle images of NiOx and perovskite surfaces: (a) Control NiOx film; (b) NiOx film with PDADI modified; (c) control perovskite film; (d) perovskite film with PDADI single-modification; (e) perovskite film with PDADI dual-modification.

    图 4  钙钛矿薄膜的XRD图, 其中黑色方点线为未修饰的钙钛矿薄膜, 红色圆点线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点线为PDADI修饰NiOx和钙钛矿的薄膜

    Fig. 4.  XRD patterns of control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).

    图 5  钙钛矿薄膜的(a) PL图谱和(b) TRPL图谱, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜

    Fig. 5.  (a) PL and (b) TRPL spectra for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).

    图 6  钙钛矿薄膜的SCLC曲线, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜

    Fig. 6.  SCLC results for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).

    图 7  NiOx及钙钛矿薄膜的UPS谱图, 其中(a)未修饰的NiOx (黑色方点线)、PDADI修饰的NiOx (红色圆点线); (b)未修饰的钙钛矿(黑色方点线)薄膜、PDADI修饰NiOx的钙钛矿(红色圆点线)薄膜、PDADI修饰NiOx和钙钛矿的薄膜(蓝色三角点线); (c)不同薄膜样品能级图

    Fig. 7.  (a) UPS spectra of NiOx film (black square dotted line), NiOx film with PDADI modified (red dotted line); (b) UPS spectra of control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line); (c) energy band structure of various films.

    图 8  钙钛矿电池的(a)正向和反向扫描的J-V曲线; (b) Jsc箱线图; (c) Voc箱线图; (d) FF箱线图; (e) PCE箱线图; (f) Voc随光强变化曲线图; (g) EQE曲线图; (h)未封装的器件在温度为25 ℃、湿度小于20%的稳定性测试, 其中黑色曲线为未修饰的钙钛矿电池, 红色曲线为PDADI修饰NiOx的钙钛矿电池, 蓝色曲线为PDADI修饰NiOx和钙钛矿的钙钛矿电池

    Fig. 8.  (a) Forward and reverse scan J-V curves; (b) Jsc boxplot diagram; (c) Voc boxplot diagram; (d) FF boxplot diagram; (e) PCE boxplot diagram; (f) Voc versus light intensity curve; (g) EQE curve; (h) stability testing of unencapsulated devices at a temperature of 25 ℃ and humidity <20%. The black curve represents control perovskite cells; the red curve represents perovskite cells with PDADI single-modification; the blue curve represents perovskite cells with PDADI dual-modification.

    图 9  钙钛矿电池的莫特-肖特基曲线, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜

    Fig. 9.  Mott-Schottky curves for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).

    表 1  未修饰的钙钛矿薄膜(Control)、PDADI修饰NiOx的钙钛矿薄膜(Single-modification)、PDADI修饰NiOx和钙钛矿的薄膜(Dual-modification) 的TRPL光谱拟合参数

    Table 1.  Fitted parameters of control perovskite film, perovskite film with PDADI single-modification, perovskite film with PDADI dual-modification from TRPL spectra.

    T1/ns A1 T2/ns A2 Taverage/ns
    Control 149.17 23.40 2089.05 1.16 311.27
    Single-modification 228.55 14.99 1528.54 0.82 295.77
    Dual-modification 183.4 28.71 991.57 1.37 220.21
    下载: 导出CSV

    表 2  未修饰的钙钛矿薄膜、PDADI修饰NiOx的钙钛矿薄膜、PDADI修饰NiOx和钙钛矿的薄膜的正反扫J-V曲线的具体参数

    Table 2.  Specific parameters of forward and reverse scanning J-V curves of control perovskite film, perovskite film with PDADI single-modification, perovskite film with PDADI dual-modification.

    Voc/V Jsc/(mA·cm–2) Fill factor/% Efficiency/%
    Control Forward 1.02 25.04 73.02 18.80
    Reverse 1.04 25.16 81.19 21.34
    Single-modification Forward 1.05 25.19 77.99 20.81
    Reverse 1.06 25.24 82.89 22.27
    Dual-modification Forward 1.09 25.34 82.25 22.55
    Reverse 1.09 25.36 84.15 23.19
    下载: 导出CSV
  • [1]

    Zhou Q S, Liu X X, Liu Z H, Zhu Y Q, Lu J F, Chen Z M, Li C J, Wang J, Xue Q F, He F F, Liang J, Li H Y, Wang S H, Tai Q D, Zhang Y Q, Liu J H, Zuo C T, Ding L M, Xiong Z H, Zheng R H, Zhang H M, Zhao P J, Jin X, Wu P F, Zhang F, Jiang Y, Zhou H P, Hu J S, Wang Y, Song Y L, Mai Y H, Xu B M, Liu S Z, Han L Y, Chen W 2024 Mater. Futures 3 022102Google Scholar

    [2]

    Luo X H, Lin X S, Gao F, Zhao Y, Li X D, Zhan L Q, Qiu Z X, Wang J, Chen C, Meng L, Gao X F, Zhang Y, Huang Z J, Fan R D, Liu H F, Chen Y R, Ren X X, Tang J H, Chen C H, Yang D, Tu Y G, Liu X, Liu D X, Zhao Q, You J B, Fang J F, Wu Y Z, Han H W, Zhang X D, Zhao D W, Huang F Z, Zhou H P, Yuan Y B, Chen Q, Wang Z K, Liu S Z, Zhu R, Nakazaki J, Li Y F, Han L Y 2022 Sci. China Chem. 65 2369Google Scholar

    [3]

    Fei C B, Li N X, Wang M R, Wang X M, Gu H Y, Chen B, Zhang Z, Ni Z Y, Jiao H Y, Xu W Z, Shi Z F, Yan Y F, Huang J S 2023 Science 380 823Google Scholar

    [4]

    Tan Q, Li Z N, Luo G F, Zhang X S, Che B, Chen G C, Gao H, He D, Ma G Q, Wang J F, Xiu J W, Yi H Q, Chen T, He Z B 2023 Nature 620 545Google Scholar

    [5]

    Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar

    [6]

    Li Z, Li B, Wu X, Sheppard S A, Zhang S F, Gao D P, Long N J, Zhu Z L 2022 Science 376 416Google Scholar

    [7]

    Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar

    [8]

    Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar

    [9]

    Wang H F, Su S J, ChenY T, Ren M, Wang S W, Wang Y, Zhu C, Miao Y F, Ouyang C Y, Zhao Y X 2024 Nature 634 1091Google Scholar

    [10]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X, Li S, Gong J Q, Luther J M, Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [11]

    Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A S R, Zhu H H, Grater L, Hadke S S, Huang C Y, Sangwan V K, Cai T, Shin D, Chen L X, Hersam M C, Mirkin C A, Chen B, Kanatzidis M G, Sargent E H 2023 Science 382 810Google Scholar

    [12]

    Degani M, An Q Z, Albaladejo-Siguan M, Hofstetter Y J, Cho C, Paulus F, Grancini G, Vaynzol Y 2021 Sci. Adv. 7 7930Google Scholar

    [13]

    Zhang X, Qiu W M, Apergi S, Singh S, Marchezi P, Song W Y, Sternemann C, Elkhouly K, Zhang D, Aguirre A, Merckx T, Krishna A, Shi Y Y, Bracesco A, Helvoirt C V, Bens F, Zardetto V, D’Haen J, Yu A R, Brocks G, Aernouts T, Moons E, Tao S X, Zhan Y Q, Kuang Y H, Poortmans J 2023 ACS Energy Lett. 8 2532Google Scholar

    [14]

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar

    [15]

    Li Y, Wang Y H, Xu Z C, Peng B, Li X F 2024 ACS Nano 18 10688Google Scholar

    [16]

    Zhang J, Zheng X X, Cui Q Y, Yao Y Y, Su H, She Y T, Zhu Y J, Li D, Liu S Z 2024 Adv. Funct. Mater. 34 2404816Google Scholar

    [17]

    Zhao C X, Zhang Q, Lyu Y, Liu J, Shen F, Liu H J, Kong H, Han H F, Krishna A, Xu J, Zhang H, Yao J X 2024 Adv. Funct. Mater. 34 2404099Google Scholar

    [18]

    Cao Y, Yan N, Wang M Z, Qi D Y, Zhang J F, Chen X, Qin R, Xiao F W, Zhao G T, Liu Y C, Cai X D, Zhao K, Liu S Z, Feng J S 2024 Angew. Chem. Int. Ed. 63 202404401Google Scholar

    [19]

    Uddin M A, Rana P J S, Ni Z Y, Yang G, Li M Z, Wang M R, Gu H Y, Zhang H K, Dou B D, Huang J S 2024 Nat. Commun. 15 1355Google Scholar

    [20]

    Liu S W, Guan X Y, Xiao W S, Chen R, Zhou J, Ren F M, Wang J N, Chen W T, Li S B, Qiu L B, Zhao Y, Liu Z H, Chen W 2022 Adv. Funct. Mater. 32 2205009Google Scholar

    [21]

    Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Obadiah G, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K 2021 Chem 7 774Google Scholar

    [22]

    Chen H, Maxwell A, Li C W, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J K, Wang Z W, Zeng L W, Park S M, Chen L, Serles P, Awni R A, Subedi B, Zheng X P, Xiao C X, Podraza N J, Filleter T, Liu C, Yang Y, Luther J M, Wolf S D, Kanatzidis M G, Yan Y F, Sargent E H 2023 Nature 613 676Google Scholar

    [23]

    Lan Z R, Wang Y D, Shao J Y, Ma D X, Liu Z H, Li D M, Hou Y, Yao J N, Zhong Y W 2024 Adv. Funct. Mater. 34 2312426Google Scholar

    [24]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [25]

    Wang Y T, Lin J Y, He Y L, Yi Zhang Y, Qiong L Q, Liu F Z, Zhou Z W, Chan C C S, Gang Li G, Feng S P, Ng A M C, Wong K S, Popovi´c J, Djuriši´ A B 2022 Sol. RRL 6 2200224Google Scholar

    [26]

    Fu Y, Liu X C, Zhao S S 2022 Chem. Nano. Mat. 8 202200091Google Scholar

    [27]

    Han Q F, Bae S H, Sun P Y, Hsieh Y H, Yang Y, Rim Y S, Zhao H X, Chen Q, Shi W Z, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [4] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [5] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [9] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究. 物理学报, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [12] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [13] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [14] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [15] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [16] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [17] 高九林, 连亚军, 杨晔, 李国庆, 杨晓晖. 采用硫氰酸铵添加剂的高效天蓝色钙钛矿发光二极管. 物理学报, 2021, 70(19): 198502. doi: 10.7498/aps.70.20211046
    [18] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [19] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  374
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-04
  • 修回日期:  2024-10-29
  • 上网日期:  2024-11-14
  • 刊出日期:  2024-12-20

/

返回文章
返回