搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真

卢文强 易颖婷 宋前举 周自刚 易有根 曾庆栋 易早

引用本文:
Citation:

基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真

卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早
cstr: 32037.14.aps.74.20241516

Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

LU Wenqiang, YI Yingting, SONG Qianju, ZHOU Zigang, YI Yougen, ZENG Qingdong, YI Zao
cstr: 32037.14.aps.74.20241516
PDF
HTML
导出引用
  • 设计了一种高灵敏度、高品质因子、高品质因数、高频探测、双固定功能的太赫兹可调完美吸收器. 该吸收器可实现4—14.5 THz范围内7个波段的完美吸收. 在进行结构设计时将线阵结构的参数与周期进行了关联. 通过计算吸收器的相对阻抗来对器件宏观层面的电磁进行解释, 并通过分析共振频率点的表面电场和磁场分布, 来分析该器件的物理机制. 计算了7个共振频点的品质因子Q, 其中最大Q值为219.41. 通过改变外部折射率, 该吸收器的灵敏度和品质因数值最大可达5421.43 GHz/RIU和35.204 RIU–1. 通过讨论关键参数对器件的影响, 得出该器件可实现双固定性能的选择、七波段吸收以及全波段反射. 通过改变狄拉克半金属的费米能级, 证明该吸收器具有良好的动态调节能力. 通过改变外部电磁波的入射角发现该器件在中低频段具有良好的稳定性, 但在高频段受外部入射角影响较大. 本文所提出的吸收器在成像、探测、检测等领域具有巨大的应用潜力, 相关工作对光电器件的设计提供了思路.
    In this work, a tunable perfect absorber in the terahertz range is designed based on Dirac semimetal nanowires, featuring high sensitivity, quality factor, and dual functionality. The absorber achieves perfect absorptions across seven bands in a range of 0–14.5 THz: f1 = 5.032 THz (84.43%), f2 = 5.859 THz (96.23%), f3 = 7.674 THz (91.36%), f4 = 9.654 THz (99.02%), f5 = 11.656 THz (93.84%), f6 = 12.514 THz (98.47%), and f7 = 14.01 THz (97.32%). To ensure structural stability during design, the periodicity of the wire array structure is carefully considered. Verification of the absorber’s performance is conducted through the calculation of impedance matching. The analyses of the surface electric field and magnetic field at resonance frequency elucidate the underlying physical mechanisms governing the absorber’s characteristics. The values of quality factor (Q) for the seven resonance points are computed, with a maximum Q of 219.41. Further investigations by changing the external refractive index show that the maximum sensitivity value and the figure of merit (FOM) value are 5421.43 GHz/RIU and 35.204 RIU–1, respectively. Then, by discussing the influence of key parameters on the device, we conclude that the device can achieve the choice of dual fixed performance. Dynamic modulation capabilities are demonstrated by changing the Dirac semimetal’s Fermi energy. Additionally, by changing the incident angle of the external electromagnetic wave, it is found that the device has good stability in the medium frequency band and low frequency band, but it is greatly affected by the external incident angle in the high frequency band, thus necessitating careful consideration in practical applications. In conclusion, the proposed absorber holds significant promise for imaging, sensing, and detection applications, providing the valuable insights for designing optoelectronic devices.
      通信作者: 宋前举, qjsong@swust.edu.cn ; 易早, yizaomy@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204388, 12074151)和四川省科学技术厅科研基金(批准号: 2022NSFSC1804)资助的课题.
      Corresponding author: SONG Qianju, qjsong@swust.edu.cn ; YI Zao, yizaomy@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204388, 12074151) and the Scientific Research Foundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2022NSFSC1804).
    [1]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar

    [2]

    张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar

    [3]

    黄若彤, 李九生 2023 物理学报 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [4]

    Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [8]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar

    [10]

    Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar

    [12]

    Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [17]

    Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar

    [18]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar

    [23]

    Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar

    [32]

    Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar

    [34]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar

    [35]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar

    [36]

    Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar

    [37]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar

    [40]

    Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar

    [43]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar

    [45]

    Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar

    [46]

    Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar

    [47]

    Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [50]

    Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar

    [51]

    Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar

    [52]

    Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar

    [53]

    Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar

    [55]

    Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar

    [56]

    Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar

    [57]

    Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar

  • 图 1  吸收器的单元结构组成及其结构参数

    Fig. 1.  Unit structure of the absorber and its structural parameters.

    图 2  不同费米能级下BDS介电常数的实部(a)和虚部(b)随频率的变化

    Fig. 2.  Variations of real part (a) and imaginary part (b) of the permittivity of BDS with frequency at different Fermi levels.

    图 3  (a)吸收器在4—14.5 THz范围内的特性曲线; (b)吸收器在其工作区间的相对阻抗(实部和虚部)示意图

    Fig. 3.  (a) Characteristic curves of the absorber in the range of 4–14.5 THz; (b) diagram of the relative impedance (real and imaginary parts) of the absorber in its operating interval.

    图 4  吸收器在不同频率处的电场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz

    Fig. 4.  Electric field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.

    图 5  吸收器在不同频率处的磁场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz

    Fig. 5.  Magnetic field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.

    图 6  (a)不同折射率下吸收器的吸收光谱; (b)谐振频率点随折射率的变化; (c) 7种模式的吸收率与折射率的对应关系

    Fig. 6.  (a) Absorption spectra of absorbers with different refractive indices; (b) the change of resonant frequency points with refractive index; (c) the corresponding relationship between absorptivity and refractive index of 7 modes.

    图 7  (a)不同BDS的费米能对吸收率的影响; (b) 7个共振频率点与费米能的关系; (c) 7个共振频率点处吸收率与费米能的关系

    Fig. 7.  (a) Effect of Fermi energy of different Dirac semi-metals on absorption efficiency; (b) the relationship between seven resonance frequency points and Fermi energy; (c) the relationship between the absorption rate and Fermi energy at seven resonance frequency points.

    表 1  本文所提出的吸收器的Q值与近年来类似吸收器之间的比较

    Table 1.  Comparison of the Q value of the proposed absorber with similar absorbers in recent years.

    参考文献[48][49][50][51][52]本文
    Q55.597377.89106154219.41
    下载: 导出CSV

    表 2  本文所提出的吸收器的灵敏度与近年来类似吸收器之间的比较

    Table 2.  Comparison of the sensitivity of the proposed absorber with similar absorbers in recent years.

    参考文献 [51] [54] [55] [56] [57] 本文
    S/(GHZ·RIU–1) 23.8 74.43 96.2 560 2475 5421.43
    下载: 导出CSV
  • [1]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar

    [2]

    张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar

    [3]

    黄若彤, 李九生 2023 物理学报 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [4]

    Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [8]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar

    [10]

    Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar

    [12]

    Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [17]

    Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar

    [18]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar

    [23]

    Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar

    [32]

    Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar

    [34]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar

    [35]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar

    [36]

    Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar

    [37]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar

    [40]

    Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar

    [43]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar

    [45]

    Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar

    [46]

    Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar

    [47]

    Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [50]

    Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar

    [51]

    Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar

    [52]

    Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar

    [53]

    Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar

    [55]

    Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar

    [56]

    Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar

    [57]

    Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [7] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [8] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [9] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [10] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [11] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [12] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [13] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [14] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [20] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究. 物理学报, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
计量
  • 文章访问数:  233
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 修回日期:  2024-12-10
  • 上网日期:  2024-12-23

/

返回文章
返回