-
设计了一种高灵敏度、高品质因子、高品质因数、高频探测、双固定功能的太赫兹可调完美吸收器. 该吸收器可实现4—14.5 THz范围内7个波段的完美吸收. 在进行结构设计时将线阵结构的参数与周期进行了关联. 通过计算吸收器的相对阻抗来对器件宏观层面的电磁进行解释, 并通过分析共振频率点的表面电场和磁场分布, 来分析该器件的物理机制. 计算了7个共振频点的品质因子Q, 其中最大Q值为219.41. 通过改变外部折射率, 该吸收器的灵敏度和品质因数值最大可达5421.43 GHz/RIU和35.204 RIU–1. 通过讨论关键参数对器件的影响, 得出该器件可实现双固定性能的选择、七波段吸收以及全波段反射. 通过改变狄拉克半金属的费米能级, 证明该吸收器具有良好的动态调节能力. 通过改变外部电磁波的入射角发现该器件在中低频段具有良好的稳定性, 但在高频段受外部入射角影响较大. 本文所提出的吸收器在成像、探测、检测等领域具有巨大的应用潜力, 相关工作对光电器件的设计提供了思路.In this work, a tunable perfect absorber in the terahertz range is designed based on Dirac semimetal nanowires, featuring high sensitivity, quality factor, and dual functionality. The absorber achieves perfect absorptions across seven bands in a range of 0–14.5 THz: f1 = 5.032 THz (84.43%), f2 = 5.859 THz (96.23%), f3 = 7.674 THz (91.36%), f4 = 9.654 THz (99.02%), f5 = 11.656 THz (93.84%), f6 = 12.514 THz (98.47%), and f7 = 14.01 THz (97.32%). To ensure structural stability during design, the periodicity of the wire array structure is carefully considered. Verification of the absorber’s performance is conducted through the calculation of impedance matching. The analyses of the surface electric field and magnetic field at resonance frequency elucidate the underlying physical mechanisms governing the absorber’s characteristics. The values of quality factor (Q) for the seven resonance points are computed, with a maximum Q of 219.41. Further investigations by changing the external refractive index show that the maximum sensitivity value and the figure of merit (FOM) value are 5421.43 GHz/RIU and 35.204 RIU–1, respectively. Then, by discussing the influence of key parameters on the device, we conclude that the device can achieve the choice of dual fixed performance. Dynamic modulation capabilities are demonstrated by changing the Dirac semimetal’s Fermi energy. Additionally, by changing the incident angle of the external electromagnetic wave, it is found that the device has good stability in the medium frequency band and low frequency band, but it is greatly affected by the external incident angle in the high frequency band, thus necessitating careful consideration in practical applications. In conclusion, the proposed absorber holds significant promise for imaging, sensing, and detection applications, providing the valuable insights for designing optoelectronic devices.
-
Keywords:
- metamaterial /
- terahertz /
- Dirac semi-metal /
- electromagnetic multifrequency absorption /
- Fano resonance /
- tunable
[1] Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar
[2] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar
Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar
[3] 黄若彤, 李九生 2023 物理学报 72 054203Google Scholar
Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar
[4] Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar
[5] Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar
[6] Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar
[7] Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar
[8] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar
[9] Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar
[10] Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar
[11] Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar
[12] Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar
[13] Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar
[14] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar
[15] Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar
[16] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[17] Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar
[18] 沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar
Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar
[19] He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar
[20] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[21] Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar
[22] Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar
[23] Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar
[24] Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar
[25] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar
[26] Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar
[27] Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar
[28] Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar
[29] Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar
[30] Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar
[31] Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar
[32] Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar
[33] Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar
[34] Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar
[35] Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar
[36] Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar
[37] Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar
[38] Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar
[39] Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar
[40] Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar
[41] Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar
[42] Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar
[43] Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar
[44] Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar
[45] Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar
[46] Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar
[47] Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar
[48] Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar
[49] Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar
[50] Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar
[51] Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar
[52] Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar
[53] Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar
[54] Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar
[55] Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar
[56] Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar
[57] Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar
-
图 4 吸收器在不同频率处的电场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz
Fig. 4. Electric field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.
图 5 吸收器在不同频率处的磁场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz
Fig. 5. Magnetic field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.
图 7 (a)不同BDS的费米能对吸收率的影响; (b) 7个共振频率点与费米能的关系; (c) 7个共振频率点处吸收率与费米能的关系
Fig. 7. (a) Effect of Fermi energy of different Dirac semi-metals on absorption efficiency; (b) the relationship between seven resonance frequency points and Fermi energy; (c) the relationship between the absorption rate and Fermi energy at seven resonance frequency points.
表 1 本文所提出的吸收器的Q值与近年来类似吸收器之间的比较
Table 1. Comparison of the Q value of the proposed absorber with similar absorbers in recent years.
-
[1] Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar
[2] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar
Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar
[3] 黄若彤, 李九生 2023 物理学报 72 054203Google Scholar
Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar
[4] Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar
[5] Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar
[6] Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar
[7] Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar
[8] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar
[9] Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar
[10] Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar
[11] Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar
[12] Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar
[13] Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar
[14] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar
[15] Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar
[16] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[17] Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar
[18] 沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar
Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar
[19] He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar
[20] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[21] Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar
[22] Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar
[23] Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar
[24] Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar
[25] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar
[26] Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar
[27] Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar
[28] Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar
[29] Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar
[30] Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar
[31] Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar
[32] Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar
[33] Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar
[34] Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar
[35] Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar
[36] Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar
[37] Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar
[38] Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar
[39] Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar
[40] Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar
[41] Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar
[42] Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar
[43] Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar
[44] Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar
[45] Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar
[46] Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar
[47] Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar
[48] Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar
[49] Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar
[50] Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar
[51] Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar
[52] Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar
[53] Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar
[54] Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar
[55] Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar
[56] Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar
[57] Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar
计量
- 文章访问数: 233
- PDF下载量: 5
- 被引次数: 0