-
超声溶栓的核心机制源于空化气泡溃灭产生的瞬态冲击波与微射流对血栓结构的破坏作用。尽管该效应已在实验与临床中被证实具备溶栓潜力,但其疗效受限于空化作用能量传递效率低和损伤可控性差等问题,其本质在于单气泡空蚀效应不足与多气泡协同作用规律不明确。本研究通过构建气-液-固多物理场耦合模型来量化分析血栓附近空化气泡溃灭动力学特性,流-固耦合部分引入结构阻尼项来表征血栓运动过程中的能量耗散;在此基础上,结合参数分析详细讨论了多气泡射流序列冲击作用下的协同效应,它对应力累积的影响是完全考虑了血栓的力学特性,即结合实验确定的超-粘弹性血栓本构模型。数值模拟表明射流冲击强度与血栓质量、超声振幅正相关,与无量纲距离、超声频率、气泡初始半径负相关;多气泡协同效应存在相对优化的半径分布范围,通过射流序列匹配可使血栓内部正应力或剪应力获得显著增幅。建议给出的协同空蚀效应预测方程,为超声溶栓控制策略提供了理论依据。Ultrasound thrombolysis primarily relies on transient shockwaves and microjets from collapsing cavitation bubbles to mechanically disrupt thrombus structures. While demonstrating clinical potential, its efficacy remains limited by low cavitation energy transfer efficiency and unpredictable tissue damage, stemming from incomplete understanding of single bubble dynamics and the synergistic mechanisms of multi-bubble interactions.
This study introduces a hyper-viscoelastic constitutive model incorporating blood clot mechanics to analyze stress accumulation under sequential microbubble impacts. A gas-liquid-solid coupled multi-physics model quantifies bubble collapse dynamics near thrombi, integrating structural damping terms to represent energy dissipation during fluid-structure interactions. Parametric analysis reveals that jet impact intensity positively correlates with thrombus mass and ultrasound amplitude, but inversely relates to dimensionless distance, ultrasound frequency, and initial bubble radius.
The proposed rate-dependent Ogden-Prony model effectively captures thrombus behaviors under transient impacts, including strain hardening, rate-dependent strengthening, and stress relaxation. Sequential jet impacts induce cumulative stress through strain hardening, with multi-bubble synergy achieving significantly higher stresses than single-bubble impact. Optimal bubble radius distributions enable amplified normal/shear stresses within thrombi – double bubble impact sequences generate 6.02 MPa maximum normal stress, surpassing thrombus tensile strength, versus 1.45 MPa from single bubble impact. Key quantitative relationships between bubble cluster parameters, dimensionless distance, thrombus mass, and stress accumulation provide optimization guidelines for ultrasound thrombolysis. Notably, controlled multi-bubble jet impact sequences with attenuated pressure peaks demonstrate enhanced therapeutic potential through cumulative mechanical effects rather than single high-intensity impacts.-
Keywords:
- Ultrasonic thrombolysis /
- Cavitation effect /
- Jet sequence /
- Stress accumulation
-
[1] Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247
[2] GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736
[3] Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74
[4] Alexandrov A V, Köhrmann M, Soinne L, Tsivgoulis G, Barreto A D, Demchuk A M, Sharma V K, Mikulik R, Muir K W, Brandt G, Alleman J, Grotta J C, Levi C R, Molina C A, Saqqur M, Mavridis D, Psaltopoulou T, Vosko M, Fiebach J B, Mandava P, Kent T A, Alexandrov A W, Schellinger P D 2019 Lancet Neurol. 18 338
[5] Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564 (in Chinese) [夏青青,刘俐 2019 心血管病学进展 40 564]
[6] Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447
[7] Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115
[8] Iga Y, Sasaki H 2023 Phys. Fluids 35 023312
[9] Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322
[10] Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703
[11] Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122
[12] Ren Z, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z, Liu S 2023 J. Fluid Mech. 976 A11
[13] Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910
[14] Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6
[15] Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11
[16] Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102
[17] Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 201 (in Chinese) [王德鑫,那仁满都拉 2018 物理学报 67 201]
[18] Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301
[19] Shen Y, Zhang L, Wu Y, Chen W 2021 Ultrason. Sonochem. 73 105535
[20] Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705
[21] Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111
[22] Lauterborn W, Hentschel W 1985 Ultrasonics 23 260
[23] Zhang A M, Yao X L 2008 Chin. Phys. B 17 927
[24] Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 91 (in Chinese) [徐珂,许龙,周光平 2021 物理学报 70 91]
[25] Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H 2024 Ultrason. Sonochem. 104 106808
[26] Xu L, Wang Y 2023 Acta Phys. Sin. 72 153 (in Chinese) [许龙,汪尧 2023 物理学报 72 153]
[27] Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem. 84 105952
[28] Zhang L X, Wen Z Q, Shao X M 2013 Acta Mech. Sin. 45 861 (in Chinese) [张凌新,闻仲卿,邵雪明 2013 力学学报 45 861]
[29] Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115
[30] Hong S, Son G 2023 Ultrason. Sonochem. 92 106252
[31] Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101
[32] Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104
[33] Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016
[34] Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562
[35] Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818
[36] Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785
[37] Ri J, Pang N, Bai S, Xu J, Xu L, Ri S, Yao Y, Greenwald S E 2023 Phys. Fluids 35 011904
[38] Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95
[39] Ma X, Huang B, Zhao X, Wang Y, Chang Q, Qiu S, Fu X, Wang G 2018 Ultrason. Sonochem. 43 80
[40] Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759
[41] Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355
[42] Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66
[43] Liu Y, Zheng Y, Reddy A S, Gebrezgiabhier D, Davis E, Cockrum J, Gemmete J J, Chaudhary N, Griauzde J M, Pandey A S, Shih A J, Savastano L E 2021 J. Neurosurg. 134 893
[44] Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327
[45] Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125
计量
- 文章访问数: 22
- PDF下载量: 1
- 被引次数: 0