搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声溶栓中多气泡协同空蚀效应的数值分析

贾宇皓 张晓敏 赵志鹏 吴琼 张林林

引用本文:
Citation:

超声溶栓中多气泡协同空蚀效应的数值分析

贾宇皓, 张晓敏, 赵志鹏, 吴琼, 张林林

Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis

Jia Yuhao, Zhang Xiaomin, Zhao Zhipeng, Wu Qiong, Zhang Linlin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 超声溶栓的核心机制源于空化气泡溃灭产生的瞬态冲击波与微射流对血栓结构的破坏作用。尽管该效应已在实验与临床中被证实具备溶栓潜力,但其疗效受限于空化作用能量传递效率低和损伤可控性差等问题,其本质在于单气泡空蚀效应不足与多气泡协同作用规律不明确。本研究通过构建气-液-固多物理场耦合模型来量化分析血栓附近空化气泡溃灭动力学特性,流-固耦合部分引入结构阻尼项来表征血栓运动过程中的能量耗散;在此基础上,结合参数分析详细讨论了多气泡射流序列冲击作用下的协同效应,它对应力累积的影响是完全考虑了血栓的力学特性,即结合实验确定的超-粘弹性血栓本构模型。数值模拟表明射流冲击强度与血栓质量、超声振幅正相关,与无量纲距离、超声频率、气泡初始半径负相关;多气泡协同效应存在相对优化的半径分布范围,通过射流序列匹配可使血栓内部正应力或剪应力获得显著增幅。建议给出的协同空蚀效应预测方程,为超声溶栓控制策略提供了理论依据。
    Ultrasound thrombolysis primarily relies on transient shockwaves and microjets from collapsing cavitation bubbles to mechanically disrupt thrombus structures. While demonstrating clinical potential, its efficacy remains limited by low cavitation energy transfer efficiency and unpredictable tissue damage, stemming from incomplete understanding of single bubble dynamics and the synergistic mechanisms of multi-bubble interactions.
    This study introduces a hyper-viscoelastic constitutive model incorporating blood clot mechanics to analyze stress accumulation under sequential microbubble impacts. A gas-liquid-solid coupled multi-physics model quantifies bubble collapse dynamics near thrombi, integrating structural damping terms to represent energy dissipation during fluid-structure interactions. Parametric analysis reveals that jet impact intensity positively correlates with thrombus mass and ultrasound amplitude, but inversely relates to dimensionless distance, ultrasound frequency, and initial bubble radius.
    The proposed rate-dependent Ogden-Prony model effectively captures thrombus behaviors under transient impacts, including strain hardening, rate-dependent strengthening, and stress relaxation. Sequential jet impacts induce cumulative stress through strain hardening, with multi-bubble synergy achieving significantly higher stresses than single-bubble impact. Optimal bubble radius distributions enable amplified normal/shear stresses within thrombi – double bubble impact sequences generate 6.02 MPa maximum normal stress, surpassing thrombus tensile strength, versus 1.45 MPa from single bubble impact. Key quantitative relationships between bubble cluster parameters, dimensionless distance, thrombus mass, and stress accumulation provide optimization guidelines for ultrasound thrombolysis. Notably, controlled multi-bubble jet impact sequences with attenuated pressure peaks demonstrate enhanced therapeutic potential through cumulative mechanical effects rather than single high-intensity impacts.
  • [1]

    Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247

    [2]

    GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736

    [3]

    Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74

    [4]

    Alexandrov A V, Köhrmann M, Soinne L, Tsivgoulis G, Barreto A D, Demchuk A M, Sharma V K, Mikulik R, Muir K W, Brandt G, Alleman J, Grotta J C, Levi C R, Molina C A, Saqqur M, Mavridis D, Psaltopoulou T, Vosko M, Fiebach J B, Mandava P, Kent T A, Alexandrov A W, Schellinger P D 2019 Lancet Neurol. 18 338

    [5]

    Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564 (in Chinese) [夏青青,刘俐 2019 心血管病学进展 40 564]

    [6]

    Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447

    [7]

    Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115

    [8]

    Iga Y, Sasaki H 2023 Phys. Fluids 35 023312

    [9]

    Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322

    [10]

    Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703

    [11]

    Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122

    [12]

    Ren Z, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z, Liu S 2023 J. Fluid Mech. 976 A11

    [13]

    Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910

    [14]

    Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6

    [15]

    Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11

    [16]

    Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102

    [17]

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 201 (in Chinese) [王德鑫,那仁满都拉 2018 物理学报 67 201]

    [18]

    Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301

    [19]

    Shen Y, Zhang L, Wu Y, Chen W 2021 Ultrason. Sonochem. 73 105535

    [20]

    Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705

    [21]

    Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111

    [22]

    Lauterborn W, Hentschel W 1985 Ultrasonics 23 260

    [23]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [24]

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 91 (in Chinese) [徐珂,许龙,周光平 2021 物理学报 70 91]

    [25]

    Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H 2024 Ultrason. Sonochem. 104 106808

    [26]

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 153 (in Chinese) [许龙,汪尧 2023 物理学报 72 153]

    [27]

    Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem. 84 105952

    [28]

    Zhang L X, Wen Z Q, Shao X M 2013 Acta Mech. Sin. 45 861 (in Chinese) [张凌新,闻仲卿,邵雪明 2013 力学学报 45 861]

    [29]

    Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115

    [30]

    Hong S, Son G 2023 Ultrason. Sonochem. 92 106252

    [31]

    Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101

    [32]

    Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104

    [33]

    Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016

    [34]

    Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562

    [35]

    Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818

    [36]

    Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785

    [37]

    Ri J, Pang N, Bai S, Xu J, Xu L, Ri S, Yao Y, Greenwald S E 2023 Phys. Fluids 35 011904

    [38]

    Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95

    [39]

    Ma X, Huang B, Zhao X, Wang Y, Chang Q, Qiu S, Fu X, Wang G 2018 Ultrason. Sonochem. 43 80

    [40]

    Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759

    [41]

    Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355

    [42]

    Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66

    [43]

    Liu Y, Zheng Y, Reddy A S, Gebrezgiabhier D, Davis E, Cockrum J, Gemmete J J, Chaudhary N, Griauzde J M, Pandey A S, Shih A J, Savastano L E 2021 J. Neurosurg. 134 893

    [44]

    Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327

    [45]

    Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125

  • [1] 彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏. 质子累积辐照效应对CMOS图像传感器饱和输出的影响. 物理学报, doi: 10.7498/aps.74.20241352
    [2] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟. 物理学报, doi: 10.7498/aps.73.20240105
    [3] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, doi: 10.7498/aps.72.20221955
    [4] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制. 物理学报, doi: 10.7498/aps.71.20221101
    [5] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法. 物理学报, doi: 10.7498/aps.71.20220558
    [6] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, doi: 10.7498/aps.70.20210194
    [7] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, doi: 10.7498/aps.68.20190683
    [8] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, doi: 10.7498/aps.68.20191198
    [9] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, doi: 10.7498/aps.66.054702
    [10] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, doi: 10.7498/aps.66.194303
    [11] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, doi: 10.7498/aps.65.144301
    [12] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, doi: 10.7498/aps.65.044304
    [13] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, doi: 10.7498/aps.64.144302
    [14] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, doi: 10.7498/aps.64.024301
    [15] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, doi: 10.7498/aps.63.018501
    [16] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究. 物理学报, doi: 10.7498/aps.61.029601
    [17] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, doi: 10.7498/aps.61.234704
    [18] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, doi: 10.7498/aps.60.046202
    [19] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, doi: 10.7498/aps.53.2638
    [20] 陈旸, 陆庆正, 王冬青, 盛六四, 王鸿飞, 张允武, 俞书勤, 马兴孝. 超声射流冷却CCl2自由基的激光诱导荧光激发谱. 物理学报, doi: 10.7498/aps.40.885
计量
  • 文章访问数:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-16

/

返回文章
返回