搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有转动惯性的活性粒子在周期交流场下的集体行为

李婷 李佳健 艾保全

引用本文:
Citation:

具有转动惯性的活性粒子在周期交流场下的集体行为

李婷, 李佳健, 艾保全

Collective behavior of active particles with rotational inertia in periodic alternating fields

LI Ting, LI Jiajian, AI Baoquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 在活性物质系统中, 外部驱动场(如电场、磁场或光场)常被用于调控粒子的运动行为与集体状态. 惯性效应在粒子动力学中扮演关键角色, 它使粒子对场的响应出现延迟, 从而诱发复杂的集体行为. 然而, 具有转动惯性的活性粒子在周期交流场作用下的动力学行为尚不明确. 本文通过数值模拟系统研究具有转动惯性的活性粒子在周期交流场作用下的集体行为. 结果表明, 改变外场频率可诱导系统出现一系列集体运动状态, 包括极性有序、向列有序以及交叉流动带等结构. 粒子的自推进速度与相互作用强度对系统状态转变的影响较弱. 本研究揭示了周期交流场在调控惯性活性粒子系统集体行为中的关键作用, 为进一步理解非平衡系统中驱动场与粒子动力学之间的耦合机制提供了新的见解.
    In active matter systems, external alternating fields, such as electric, magnetic, or optical fields, are widely used to regulate the motion and collective states of self-propelled particles. The presence of inertia introduces a delayed response to such fields, giving rise to complex collective dynamics. Nevertheless, how active particles with rotational inertia behave collectively under an unbiased periodic alternating field remains unclear. In this work, we conduct numerical simulations to study the collective behavior of such particles driven by a time-varying external torque that alternates symmetrically in direction.Our results show that the frequency of the alternating field plays a decisive role in shaping the collective state of the system. As the frequency increases, the system undergoes a series of different phase transitions. At low frequencies, the particles exhibit synchronized polar order. With frequency rising, inertial delay disrupts this synchronization, driving the system into a disordered state. When the field period matches the intrinsic rotational relaxation time of the particles, stable horizontal or vertical cross-flow bands emerge, within which groups of particles travel in opposite directions. At very high frequencies, the system develops nematic order, characterized by counter-propagating particle streams. The effective diffusion coefficient reaches its peak during the formation of alternating flow bands, indicating enhanced collective transport. These structural transitions are consistently captured by the evolution of global order parameters. In contrast, variations in the particle self-propulsion speed and repulsive interaction strength exert only minor influences on the collective states, highlighting the dominant role of the alternating field frequency. This study elucidates the fundamental mechanism through which periodic alternating fields regulate the collective behavior of inertial active particles via frequency tuning. The results offer new insights into the coupling between external driving fields and particle dynamics in non-equilibrium systems, with potential applications in the design of micromachines and active smart materials.
  • 图 1  周期交流场驱动惯性活性粒子在周期边界中运动粒子快照图 (a) $ \omega =0.01 $; (b) $ \omega =10 $; (c) $ \omega =13 $; (d) $ \omega =14 $; (e) $ \omega = $$ 15 $; (f) $ \omega =16 $; (g) $ \omega =33 $; (h) $ \omega =46 $; (i) $ \omega =50 $; 其他参数设置为: $ I=3000,\; \varepsilon =1.0,\; {D}_{\mathrm{r}}=0.01\text{和}{{v}}_{0}=1 $. 其中, 用粒子填充颜色区分粒子在竖直方向的运动方向, 黑色表示$ {v}_{y} > 0 $, 绿色表示$ {v}_{y} < 0 $, 红色箭头表示粒子运动方向

    Fig. 1.  Particle snapshots of unbiased AC field-driven inertially active particles moving in the periodic boundary: (a) $ \omega =0.01 $; (b) $ \omega =10 $; (c) $ \omega =13 $; (d) $ \omega =14 $; (e) $ \omega =15 $; (f) $ \omega =16 $; (g) $ \omega =33 $; (h) $ \omega =46 $; (i) $ \omega =50 $. Other parameters are set to $ I=3000,\; { \varepsilon }=1.0,\; {D}_{\mathrm{r}}=0.01,\; \text{and}\;{{v}}_{0}=1$. Where the particle fill color is used to distinguish the particle motion direction in the vertical direction, black means $ {v}_{y} > 0 $, green means $ {v}_{y} < 0 $, and the red arrow indicates the direction of particle motion.

    图 2  系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随周期交流场频率$ \omega $的变化. 其他参数设置为$ {I}=3000,\; \varepsilon=1.0,\; {D}_{\mathrm{r}}=0.01\text{和}{{v}}_{0}=1.0 $. 图中a, b, c, d, e及f点的状态分别对应图1(a)图1(b)图1(d)图1(f)图1(h)图1(j)

    Fig. 2.  Variation of the effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ of inertially active particles with AC field frequency $ \omega $. Other parameters are set to $ {I}= 3000,\; \varepsilon = 1.0,\; {{D}}_{\text{r}}= $$ 0.01 ,\;\text{and}\;{{v}}_{0}= 1.0. $ The states at points a, b, c, d, e and f in the figure correspond to Fig. 1(a), Fig. 1(b), Fig. 1(d), Fig. 1(f), Fig. 1(h) and Fig. 1(j), respectively.

    图 3  周期交流场驱动下系统 (a) 极性序参量$ P $随交流场频率$ { \omega } $的变化; (b) 向列序参量$ Q $随交流场频率$ { \omega } $的变化. 其他参数设置为: $ {I}=3000,\; \varepsilon =1.0,\; {{D}}_{\text{r}}=0.01\text{和}{{v}}_{0}= 1 $. 图中a, b, c, d, e及f点的状态分别对应图1(a)图1(b)图1(d)图1(f)图1(h)图1(j)

    Fig. 3.  (a) Variation of the system polarity order parameter P with AC field frequency $ \omega $; (b) variation of the vectorial order parameter $ Q $ with the AC field frequency $ \omega $. Other parameters are set to $ {I}= 3000,\; { \varepsilon }= 1.0,\; {{D}}_{\text{r}}= $$ 0.01,\; \text{and}\;{{v}}_{0}=1.0. $The states at points a, b, c, d, e and f in the figure correspond to Fig. 1(a), Fig. 1(b), Fig. 1(d), Fig. 1(f), Fig. 1(h) and Fig. 1(j), respectively.

    图 4  (a) 不同$ \omega $值下, 有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随周期交流场强度$ {I} $的变化; (b) 不同$ \omega $值下, 极性序参量$ P $随随交流场强度$ I $的变化; (c) 不同$ \omega $值下, 向列序参量$ Q $随交流场强度I的变化. 其他参数设置为: $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01\text{和}{{v}}_{0}= 1 $

    Fig. 4.  (a) Variation of effective diffusion coefficient $ {{D}}_{\text{eff}} $ with AC field strength I for different $ \omega $; (b) variation of polarity order parameter P with AC field strength I for different $ \omega $; (c) variation of nematic order parameter $ Q $ with AC field strength $ I $ for different $ \omega $. The other parameters are set as $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01,\; {\text{and}}\;{{v}}_{0}= 1 $.

    图 5  (a) 在不同$ \omega $值下, 系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随粒子自驱动速度$ {v}_{0} $的影响; (b) 在不同$ \omega $值下, 系统极性序参量$ {P} $随粒子自驱动速度$ {v}_{0} $的变化; (c) 在不同$ \omega $值下, 系统向列序参量$ Q $随粒子自驱动速度$ {v}_{0} $的变化. 其他参数设置为: $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01 $$ {\text{和}}{I}= 3000 $

    Fig. 5.  (a) Variation of effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ with particle self-propulsion velocity $ {v}_{0} $ at different frequencies; (b) variation of the system polar order parameter P with the particle self-propulsion velocity $ {v}_{0} $ at different frequencies; (c) variation of the system nematic order parameter $ Q $ with the particle self-propulsion velocity $ {v}_{0} $ at different frequencies. The other parameters are set as $ \varepsilon = 1.0, \;{D_{\text{r}}} = 0.01{\text{ and }}\;I = 3000 $.

    图 6  (a) 不同$ \omega $值下, 系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随相互作用强度$ { \varepsilon } $的变化; (b) 不同$ \omega $值下, 系统极性序参量P随相互作用强度$ { \varepsilon } $的变化; (c) 不同$ \omega $值下, 系统向列序参量Q随相互作用强度$ { \varepsilon } $的变化. 其他参数设置为: $ {I}=3000, \;{{D}}_{\text{r}}=0.01\text{和}{{v}}_{0}=1 $

    Fig. 6.  (a) Variation of effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $; (b) variation of the system polar order parameter P with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $; (c) variation of the system nematic order parameter $ Q $ with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $. The other parameters are set as $ {I}=3000, \;{D}_{\mathrm{r}}=0.01, \;{\text{and}}\;{{v}}_{0}=1$.

  • [1]

    Klotsa D 2019 Soft Matter 15 8946Google Scholar

    [2]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Reviews of Modern Physics 85 1143Google Scholar

    [3]

    Nachtigall W 2001 Mathematical Methods in the Applied Sciences 24 1401Google Scholar

    [4]

    Dauchot O, Loewen H 2019 Journal of Chemical Physics 151 114901Google Scholar

    [5]

    Wensink H H, Loewen H 2008 Physical Review E 78 031409Google Scholar

    [6]

    Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F, Yang M 2020 Proceedings of the National Academy of Sciences of the United States of America 117 11901

    [7]

    Peruani F, Ginelli F, Baer M, Chate H 2011 International Conference on Statphys Kolkata VII Kolkata, INDIA, 2011 Nov 26–30

    [8]

    Stenhammar J, Marenduzzo D, Allen R J, Cates M E 2014 Soft Matter 10 1489Google Scholar

    [9]

    Tailleur J, Cates M E 2008 Physical Review Letters 100 218103Google Scholar

    [10]

    Toner J, Tu Y H 1995 Physical Review Letters 75 4326Google Scholar

    [11]

    Liao G-J, Hall C K, Klapp S H L 2020 Soft Matter 16 6443Google Scholar

    [12]

    Romanczuk P, Baer M, Ebeling W, Lindner B, Schimansky-Geier L 2012 European Physical Journal-Special Topics 202 1Google Scholar

    [13]

    Speck T 2020 Soft Matter 16 2652Google Scholar

    [14]

    Scholz C, Jahanshahi S, Ldov A, Loewen H 2018 Nature Communications 9 5156Google Scholar

    [15]

    Mijalkov M, McDaniel A, Wehr J, Volpe G 2016 Physical Review X 6 011008

    [16]

    Scholz C, Engel M, Poeschel T 2018 Nature Communications 9 1497Google Scholar

    [17]

    Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S 2016 Nature Materials 15 1095Google Scholar

    [18]

    Zhang B, Snezhko A, Sokolov A 2022 Physical Review Letters 128 018004Google Scholar

    [19]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [20]

    Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Loewen H, Yeomans J M 2012 Proceedings of the National Academy of Sciences of the United States of America 109 14308

    [21]

    Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E 2015 Proceedings of the Ieee 103 205Google Scholar

    [22]

    Bricard A, Caussin J-B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nature Communications 6 7470Google Scholar

    [23]

    Chen J, Zhang H, Zheng X, Cui H 2014 Aip Advances 4 031325Google Scholar

    [24]

    Nadal F, Michelin S 2020 Journal of Fluid Mechanics 898 A10Google Scholar

    [25]

    Wu Y, Fu A, Yossifon G 2020 Science Advances 6 eaay4412Google Scholar

    [26]

    Lee J G, Al Harraq A, Bishop K J M, Bharti B 2021 Journal of Physical Chemistry B 125 4232Google Scholar

    [27]

    Marcos J C U, Liebchen B 2023 Physical Review Letters 131 038201Google Scholar

  • [1] 陈健丽, 李佳健, 艾保全. 具有吸引作用的活性布朗粒子的团簇行为和自发速度对齐. 物理学报, doi: 10.7498/aps.74.20241746
    [2] 杜海婷, 周晓怡, 倪琦英, 陈康, 田文得, 张天辉. Quincke活性胶体体系中吸引力对集体行为的影响. 物理学报, doi: 10.7498/aps.74.20250292
    [3] 蔡加禾, 戴栋, 潘泳全. 表面水滴附着对大气压氦气介质阻挡放电系统放电特性与化学分布的影响. 物理学报, doi: 10.7498/aps.74.20250827
    [4] 郭思航, 杨光宇, 孟国庆, 王英英, 潘俊星, 张进军. 光场调控的活性粒子体系的动态自组装. 物理学报, doi: 10.7498/aps.74.20241556
    [5] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, doi: 10.7498/aps.73.20240784
    [6] 周雄峰, 陈彬, 刘坤. 氩气等离子体射流特性: 电压、气流、外磁场的综合影响. 物理学报, doi: 10.7498/aps.73.20241166
    [7] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, doi: 10.7498/aps.73.20240686
    [8] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, doi: 10.7498/aps.72.20230792
    [9] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, doi: 10.7498/aps.72.20230307
    [10] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [11] 仲颖, 施夏清. 自驱动杆状粒子在半柔性弹性环中的集体行为. 物理学报, doi: 10.7498/aps.69.20200561
    [12] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, doi: 10.7498/aps.69.20200505
    [13] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动. 物理学报, doi: 10.7498/aps.68.20190425
    [14] 杨杰, 李秀平, 王善进, 罗诗裕. 晶体摆动场辐射及其共振线附近的粒子运动行为. 物理学报, doi: 10.7498/aps.63.084104
    [15] 王颖泽, 宋新南, 刘栋. 热惯性对热弹性行为影响的渐近分析. 物理学报, doi: 10.7498/aps.62.214601
    [16] 杨波, 梅冬成. 非高斯噪声对惯性棘轮中粒子负迁移率的影响. 物理学报, doi: 10.7498/aps.62.110502
    [17] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, doi: 10.7498/aps.62.024703
    [18] 张 林, 孔红艳, 杨国健. 约束阱中受激发原子的集体反弹效应所导致的自组织行为. 物理学报, doi: 10.7498/aps.55.5122
    [19] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, doi: 10.7498/aps.53.2029
    [20] 陈金全. 原子核的集体运动和准粒子无规位相近似. 物理学报, doi: 10.7498/aps.24.281
计量
  • 文章访问数:  246
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-09-15
  • 上网日期:  2025-10-14

/

返回文章
返回