-
Ferroelectric random access memory (FeRAM) has superior features such as low power consumption, short write access time, low voltage, high tolerance to radiation. Data about the total ionizing dose (TID) radiation effects of FeRAM have not been rich in the literature so far. Experimental study of the ionizing radiation effect of FeRAM is carried out based on Co-60 γ rays and 2 MeV electrons. And the TID radiation damages to the FeRAM in the dynamic biased, static biased and unbiased case are studied. The direct current and alternating current parameters are tested by J-750. The test results indicate that the stored information about the memory cell has no change before failure, the ferroelectric capacitors are still able to hold the data. Accordingly, the TID failure of the FeRAM should be mainly ascribed to the poor TID hardness of the peripheral complementary metal oxide semiconductor circuits. Besides, three types of electric fields from three working conditions can result in different generation and recombination rates of electronhole pairs. For static biased case, the internal electric field in the FeRAM is constant. It can lead to high net production of the electronhole pairs and a great number of trapped charges. Hence the radiation damage in the static biased case is most serious. With the increase of the total radiation dose, the electrical parameters of FeRAM have different degradations. Part of the parameters that can be detected by J-750, may lapse before they are detected online. Standby current, operating power supply current, leakage current and output low voltage are radiationsensitive parameters of FeRAM through analyzing the test data. And, other parameters, which have slight changes, have small effect on the degradation of the device. Furthermore, the electron accelerator is used in electron irradiation experiment. By comparing the results of the two kinds of radiation tests, it is discovered that the electrons tend to cause lighter TID degradation than Co-60 γ rays because of the high density of electrons in the electron irradiation environment and low net production rate of electronhole pairs. In addition, the electrons have weaker penetration than Co-60 γ rays due to low energy. The device packaging, the upper metal layers can also influence the experimental result of electron irradiation. The above conclusions provide a reference value for the total dose effect of FeRAM and will be of great significance for studying the radiation hardening of FeRAM.
-
Keywords:
- ferroelectric random access memory /
- total ionizing dose effect /
- Co-60 γ rays /
- electrons
[1] Rana S, Todd C M, Fat D H 2011 Ferroelectrics 413 170
[2] Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]
[3] Scott J F 2007 Science 315 954
[4] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667
[5] Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]
[6] Zhai Y H, Li W, Li P, Hu B, Huo W R, Li J H, Gu K 2012 Mater. Rev. 26 34 (in Chinese) [翟亚红, 李威, 李平, 胡滨, 霍伟荣, 李俊宏, 辜科 2012 材料导报 26 34]
[7] Benedetto J M, Moore R A, Mclean F B, Brody P S 1990 IEEE Trans. Nucl. Sci. 37 1713
[8] Gu K, Liu J J, Li W, Liu Y, Li P 2015 Microelectron. Reliab. 55 873
[9] Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE Trans. Nucl. Sci. 37 1703
[10] Shen J Y, Li W, Zhang Y B 2017 IEEE Trans. Nucl. Sci. 64 969
[11] Lou L F, Yang Y T, Cai C C, Gao F, Tang C L 2007 High Power Laser and Particle Beams 19 2091 (in Chinese) [娄利飞, 杨银堂, 柴常春, 高峰, 唐重林 2007 强激光与粒子束 19 2091]
[12] Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]
[13] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Cavrois V F 2008 IEEE Trans. Nucl. Sci. 55 1833
[14] Li M S, Yu X F, Ren D Y, Guo Q, Li Y D, Gao B, Cui J W, Lan B, Fei W X, Chen R, Zhao Y 2011 Microelectronics 41 128 (in Chinese) [李茂顺, 余学峰, 任迪远, 郭旗, 李豫东, 高博, 崔江维, 兰博, 费武雄, 陈睿, 赵云 2011 微电子学 41 128]
[15] Scott J F (translated by Zhu J S) 2004 Ferroelectric Memory (Beijing: Tsinghua University Press) pp74-78 (in Chinese) [斯科特 著 (朱劲松 译) 2004 铁电存储器(北京:清华大学出版社) 第74–78页]
[16] Gao B, Yu X F, Ren D Y, Li Y D, Cui J W, Li M S, Li M, Wang Y Y 2011 Acta Phys. Sin. 60 068702 (in Chinese) [高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元 2011 物理学报 60 068702]
[17] Li M, Yu X F, Xu F Y, Li M S, Gao B, Cui J W, Zhou D, Xi S B, Wang F 2012 Atomic Energy Sci. Technol. 46 507 (in Chinese) [李明, 余学峰, 许发月, 李茂顺, 高博, 崔江维, 周东, 席善斌, 王飞 2012 原子能科学技术 46 507]
[18] Li M, Yu X F, Xue Y G, Lu J, Cui J W, Gao B 2012 Acta Phys. Sin. 61 106103 (in Chinese) [李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博 2012 物理学报 61 106103]
[19] Paillet P, Schwank J, Shaneyfelt M R, Carvrois V F, Jones R L, Flament O 2002 IEEE Trans. Nucl. Sci. 49 2656
[20] He B P, Yao Z B, Zhang F Q 2009 Chin. Phys. C 33 436
[21] He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 物理学报 55 3546
-
[1] Rana S, Todd C M, Fat D H 2011 Ferroelectrics 413 170
[2] Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]
[3] Scott J F 2007 Science 315 954
[4] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667
[5] Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]
[6] Zhai Y H, Li W, Li P, Hu B, Huo W R, Li J H, Gu K 2012 Mater. Rev. 26 34 (in Chinese) [翟亚红, 李威, 李平, 胡滨, 霍伟荣, 李俊宏, 辜科 2012 材料导报 26 34]
[7] Benedetto J M, Moore R A, Mclean F B, Brody P S 1990 IEEE Trans. Nucl. Sci. 37 1713
[8] Gu K, Liu J J, Li W, Liu Y, Li P 2015 Microelectron. Reliab. 55 873
[9] Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE Trans. Nucl. Sci. 37 1703
[10] Shen J Y, Li W, Zhang Y B 2017 IEEE Trans. Nucl. Sci. 64 969
[11] Lou L F, Yang Y T, Cai C C, Gao F, Tang C L 2007 High Power Laser and Particle Beams 19 2091 (in Chinese) [娄利飞, 杨银堂, 柴常春, 高峰, 唐重林 2007 强激光与粒子束 19 2091]
[12] Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]
[13] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Cavrois V F 2008 IEEE Trans. Nucl. Sci. 55 1833
[14] Li M S, Yu X F, Ren D Y, Guo Q, Li Y D, Gao B, Cui J W, Lan B, Fei W X, Chen R, Zhao Y 2011 Microelectronics 41 128 (in Chinese) [李茂顺, 余学峰, 任迪远, 郭旗, 李豫东, 高博, 崔江维, 兰博, 费武雄, 陈睿, 赵云 2011 微电子学 41 128]
[15] Scott J F (translated by Zhu J S) 2004 Ferroelectric Memory (Beijing: Tsinghua University Press) pp74-78 (in Chinese) [斯科特 著 (朱劲松 译) 2004 铁电存储器(北京:清华大学出版社) 第74–78页]
[16] Gao B, Yu X F, Ren D Y, Li Y D, Cui J W, Li M S, Li M, Wang Y Y 2011 Acta Phys. Sin. 60 068702 (in Chinese) [高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元 2011 物理学报 60 068702]
[17] Li M, Yu X F, Xu F Y, Li M S, Gao B, Cui J W, Zhou D, Xi S B, Wang F 2012 Atomic Energy Sci. Technol. 46 507 (in Chinese) [李明, 余学峰, 许发月, 李茂顺, 高博, 崔江维, 周东, 席善斌, 王飞 2012 原子能科学技术 46 507]
[18] Li M, Yu X F, Xue Y G, Lu J, Cui J W, Gao B 2012 Acta Phys. Sin. 61 106103 (in Chinese) [李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博 2012 物理学报 61 106103]
[19] Paillet P, Schwank J, Shaneyfelt M R, Carvrois V F, Jones R L, Flament O 2002 IEEE Trans. Nucl. Sci. 49 2656
[20] He B P, Yao Z B, Zhang F Q 2009 Chin. Phys. C 33 436
[21] He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 物理学报 55 3546
Catalog
Metrics
- Abstract views: 7129
- PDF Downloads: 140
- Cited By: 0