Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progresses of thermal conduction in two-dimensional materials

Wu Xiang-Shui Tang Wen-Ting Xu Xiang-Fan

Citation:

Recent progresses of thermal conduction in two-dimensional materials

Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan
PDF
HTML
Get Citation
  • The two-dimensional (2D) materials represented by graphene and boron nitride provide an excellent platform for the study of thermal conduction and the interfacial thermal resistance in low-dimensional system. Recent studies recover exotic physics behind the novel thermal transport properties of 2D materials, such as length effect, dimensional effect, isotopic effect, anisotropic effect, etc. In this review, we introduce the recent progress of thermal properties in 2D materials in the last decade. The principle and development of thermal conduction measurement technologies used in 2D materials are introduced, followed by the experimental progress of thermal conduction and interfacial thermal resistance. Special attention is paid to the abnormal thermal transport and relevant physical problems. Finally, we present thermal management and heat dissipation in 2D electronic devices, summarize and point out the problems and bottlenecks, and forecast the future research directions and foregrounds.
      Corresponding author: Xu Xiang-Fan, xuxiangfan@tongji.edu.cn
    • Funds: Project supported by the Key Research and development Plan of Guangdong Province (Grant No. 2020B010190004), the Key Special Project of the National Key Research and Development Plan of “Strategic Advanced Electronic Materials” (Grant No. 2017YFB0406000), and the National Natural Science Foundation of China (Grant Nos. 11674245, 11890703, 11935010)
    [1]

    Moore G E 1998 P. IEEE 86 82Google Scholar

    [2]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [3]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [4]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Gu X K, Wei Y J, Yin X B, Li B W, Yang R G 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [7]

    Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [8]

    Yang N, Xu X F, Zhang G, Li B W 2012 AIP Adv. 2 041410Google Scholar

    [9]

    Liu S, Xu X F, Xie R G, Zhang G, Li B W 2012 Eur. Phys. J. B 85 337Google Scholar

    [10]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [11]

    Yang L, Grassberger P, Hu B 2006 Phys. Rev. E 74 062101Google Scholar

    [12]

    Wang L, Hu B, Li B W 2012 Phys. Rev. E 86 040101(R)Google Scholar

    [13]

    Li Q Y, Takahashi K, Zhang X 2017 Phys. Rev. Lett. 119 179601Google Scholar

    [14]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2018 arXiv: 1806.11315 [cond-mat.mes-hall]

    [15]

    Li Q Y 2018 arXiv: 1807.09990 [cond-mat.mtrl-sci]

    [16]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [17]

    Xu X F, Pereira L F, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Bui C T, Xie R G, Thong J T, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [18]

    Yu Y, Minhaj T, Huang L, Yu Y, Cao L 2020 Phys. Rew. Applied 13 034059Google Scholar

    [19]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [20]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [21]

    Xu X F, Chen J, Li B W 2016 J. Phys.: Condens. Matter 28 483001Google Scholar

    [22]

    Gu X K, Yang R G 2016 Annual Review of Heat Transfer 19 1Google Scholar

    [23]

    Fu Y F, Hansson J, Liu Y, Chen S J, Zehri A, Samani M K, Wang N, Ni Y X, Zhang Y, Zhang Z-B, Wang Q L, Li M X, Lu H B, Sledzinska M, Torres C M S, Volz S, Balandin A A, Xu X F, Liu J 2020 2 D Mater. 7 012001Google Scholar

    [24]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [25]

    Zhao Y S, Cai Y Q, Zhang L F, Li B W, Zhang G, Thong J T L 2020 Adv. Funct. Mater. 30 1903929Google Scholar

    [26]

    Zhang G, Zhang Y W 2017 Chin. Phys. B 26 034401Google Scholar

    [27]

    Qiu L, Zhu N, Feng Y H, Michaelides E E, Żyła G, Jing D W, Zhang X X, Norris P M, Markides C N, Mahian O 2020 Phys. Rep. 843 1Google Scholar

    [28]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [29]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Li S 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [30]

    Shi L, Li D Y, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [31]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [32]

    Cahill D G, Katiyar M, Abelson J R 1994 Phys. Rev. B 50 6077Google Scholar

    [33]

    Jiang P Q, Qian X, Yang R G 2018 J. Appl. Phys. 124 161103Google Scholar

    [34]

    Bozlar M, He D, Bai J, Chalopin Y, Mingo N, Volz S 2010 Adv. Mater. 22 1654Google Scholar

    [35]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502Google Scholar

    [36]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 R2514Google Scholar

    [37]

    Hochbaum A I, Chen R K, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P D 2008 Nature 451 163Google Scholar

    [38]

    Guo J, Huang Y, Wu X S, Wang Q L, Zhou X J, Xu X F, Li B W 2019 Phys. Status Solidi RRL 13 1800529Google Scholar

    [39]

    Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W 2018 Natl. Sci. Rev. 5 500Google Scholar

    [40]

    Aiyiti A, Zhang Z W, Chen B S, Hu S Q, Chen J, Xu X F, Li B W 2018 Carbon 140 673Google Scholar

    [41]

    Wang C R, Guo J, Dong L, Aiyiti A, Xu X F, Li B W 2016 Sci. Rep. 6 25334Google Scholar

    [42]

    Wang Z Q, Xie R G, Bui C T, Liu D, Ni X X, Li B W, Thong J T 2011 Nano Lett. 11 113Google Scholar

    [43]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [44]

    郭劼, 王成如, 董岚, 徐象繁 2017 工程热物理学报 38 2220

    Guo J, Wang C R, Dong L, Xu X F 2017 J. Eng. Thermophys. 38 2220

    [45]

    Aiyiti A, Hu S Q, Wang C R, Xi Q, Cheng Z F, Xia M G, Ma Y L, Wu J B, Guo J, Wang Q L, Zhou J, Chen J, Xu X F, Li B W 2018 Nanoscale 10 2727Google Scholar

    [46]

    Yang X, Li X Q, Deng Y, Wang Y X, Liu G L, Wei C, Li H, Wu Z, Zheng Q H, Chen Z W, Jiang Q, Lu H M, Zhu J 2019 Adv. Funct. Mater. 29 1902427Google Scholar

    [47]

    Zhao Y S, Zheng M R, Wu J, Huang B J, Thong J T L 2020 Nanotechnology 31 225702Google Scholar

    [48]

    Lee S, Yang F, Suh J, Yang S J, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y B, Ko C, Park J, Liu K, Li J B, Hippalgaonkar K, Urban J J, Tongay S, Wu J Q 2015 Nat. Commun. 6 8573Google Scholar

    [49]

    Zhao Y S, Zhang G, Nai M H, Ding G, Li D F, Liu Y, Hippalgaonkar K, Lim C T, Chi D Z, Li B W, Wu J, Thong J T L 2018 Adv. Mater. 30 1804928Google Scholar

    [50]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [51]

    Wang Q L, Chen Y Y, Aiyiti A, Zheng M R, Li N B, Xu X F 2020 Chin. Phys. B 29 084402

    [52]

    Wingert M C, Chen Z C, Kwon S, Xiang J, Chen R K 2012 Rev. Sci. Instrum. 83 024901Google Scholar

    [53]

    Zheng J L, Wingert M C, Dechaumphai E, Chen R C 2013 Rev. Sci. Instrum. 84 114901Google Scholar

    [54]

    Adili A, Bai X, Wu J, Xu X F, Li B W 2018 Sci. Bull. 63 452Google Scholar

    [55]

    Liu D, Xie R G, Yang N, Li B W, Thong J T 2014 Nano Lett. 14 806Google Scholar

    [56]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos Elton J G, Li L H 2019 Sci. Adv. 5 eaav0129Google Scholar

    [57]

    Lin Z Y, Liu C R, Chai Y 2016 2D Mater. 3 041009Google Scholar

    [58]

    Luo Z, Maassen J, Deng Y X, Du Y C, Garrelts R P, Lundstrom M S, Ye P D, Xu X F 2015 Nat. Commun. 6 8572Google Scholar

    [59]

    Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F, Katiyar R S 2013 J. Phys. Chem. C 117 9042Google Scholar

    [60]

    Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X F, Andras K, Tengfei L, Angela R H W, Xing H G 2014 ACS Nano 8 986Google Scholar

    [61]

    Calizo I, Balandin A A, Bao W, Miao F, Lau C N 2007 Nano Lett. 7 2645Google Scholar

    [62]

    Zhou H Q, Zhu J X, Liu Z, Yan Z, Fan X J, Lin J, Wang G, Yan Q Y, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [63]

    Faugeras C, Faugeras B, Orlita M, Potemski M, Nair R R, Geim A K 2010 ACS Nano 4 1889Google Scholar

    [64]

    Ghosh S, Bao W Z, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [65]

    Yuan P Y, Wang R D, Wang T Y, Wang X W, Xie Y S 2018 Phys. Chem. Chem. Phys. 20 25752Google Scholar

    [66]

    Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [67]

    Reparaz J S, Chavez-Angel E, Wagner M R, Graczykowski B, Gomis-Bresco J, Alzina F, Sotomayor Torres C M 2014 Rev. Sci. Instrum. 85 034901Google Scholar

    [68]

    Li Q Y, Ma W G, Zhang X 2016 Int. J. Heat Mass Transf. 95 956Google Scholar

    [69]

    Li Q Y, Xia K L, Zhang J, Zhang Y Y, Li Q Y, Takahashi K, Zhang X 2017 Nanoscale 9 10784Google Scholar

    [70]

    Wang R D, Wang T Y, Zobeiri H, Yuan P Y, Deng C, Yue Y N, Xu S, Wang X W 2018 Nanoscale 10 23087Google Scholar

    [71]

    Xu S, Fan A, Wang H D, Zhang X, Wang X W 2020 Int. J. Heat Mass Transf. 154 119751Google Scholar

    [72]

    Eesley G L 1983 Phys. Rev. Lett. 51 2140Google Scholar

    [73]

    Islam A, Van Den Akker A, Feng P X 2018 Nano Lett. 18 7683Google Scholar

    [74]

    Sood A, Xiong F, Chen S, Cheaito R, Lian F F, Asheghi M, Cui Y, Donadio D, Goodson K E, Pop E 2019 Nano Lett. 19 2434Google Scholar

    [75]

    Jiang P Q, Qian X, Gu X K, Yang R G 2017 Adv. Mater. 29 1701068Google Scholar

    [76]

    Schmidt A J, Collins K C, Minnich A J, Chen G 2010 J. Appl. Phys. 107 104907Google Scholar

    [77]

    Jang H, Wood J D, Ryder C R, Hersam M C, Cahill D G 2015 Adv. Mater. 27 8017Google Scholar

    [78]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351Google Scholar

    [79]

    Cahill D G 2018 MRS Bull. 43 782Google Scholar

    [80]

    Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A 2013 Sci. Rep. 3 2963Google Scholar

    [81]

    Kimling J, Philippi-Kob A, Jacobsohn J, Oepen H P, Cahill D G 2017 Phys. Rev. B 95 184305Google Scholar

    [82]

    D'acremont Q, Pernot G, Rampnoux J M, Furlan A, Lacroix D, Ludwig A, Dilhaire S 2017 Rev. Sci. Instrum. 88 074902Google Scholar

    [83]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802Google Scholar

    [84]

    丰平, 王太宏 2003 物理学报 52 2249Google Scholar

    Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249Google Scholar

    [85]

    Yoon K, Hwang G, Chung J, Kim H G, Kwon O, Kihm K D, Lee J S 2014 Carbon 76 77Google Scholar

    [86]

    Zhang Y, Zhang C, Wei D C, Bai X, Xu X F 2019 CrystEngComm 21 5402Google Scholar

    [87]

    Zhang Y, Zhu W K, Hui F, Lanza M, Borca-Tasciuc T, Muñoz Rojo M 2019 Adv. Funct. Mater. 30 1900892Google Scholar

    [88]

    Kim J, Seo D J, Park H, Kim H, Choi H J, Kim W 2017 Rev. Sci. Instrum. 88 054902Google Scholar

    [89]

    Kim J, Ou E, Sellan D P, Shi L 2015 Rev. Sci. Instrum. 86 044901Google Scholar

    [90]

    Wang N, Samani M K, Li H, Dong L, Zhang Z W, Su P, Chen S J, Chen J, Huang S R, Yuan G J, Xu X F, Li B W, Leifer K, Ye L L, Liu J 2018 Small 14 e1801346Google Scholar

    [91]

    Rojo M M, Calero O C, Lopeandia A F, Rodriguez-Viejo J, Martin-Gonzalez M 2013 Nanoscale 5 11526Google Scholar

    [92]

    Wang Y X, Xu N, Li D Y, Zhu J 2017 Adv. Funct. Mater. 27 1604134Google Scholar

    [93]

    Xian Y Q, Zhang P, Zhai S P, Yuan P, Yang D G 2018 Appl. Therm. Eng. 130 1530Google Scholar

    [94]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [95]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [96]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [97]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [98]

    Chen S S, Moore A L, Cai W W, Suk J W, An J, Mishra C, Amos C, Magnuson C W, Kang J Y, Shi L, Ruoff R S 2011 ACS Nano 5 321Google Scholar

    [99]

    Lee J U, Yoon D, Kim H, Lee S W, Cheong H 2011 Phys. Rev. B 83 081419Google Scholar

    [100]

    Xu X F, Wang Y, Zhang K W, Zhao X M, Bae S, Heinrich M, Bui C T, Xie R G, Thong J T L, Hong B, Loh K P, Li B W, Barbaros O 2010 arXiv: 1012.2937 [cond-mat.mes-hall]

    [101]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [102]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

    [103]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [104]

    Mei S, Maurer L N, Aksamija Z, Knezevic I 2014 J. Appl. Phys. 116 164307Google Scholar

    [105]

    Munoz E, Lu J, Yakobson B I 2010 Nano Lett. 10 1652Google Scholar

    [106]

    Feng T L, Lindsay L, Ruan X L 2017 Phys. Rev. B 96 161201(R)Google Scholar

    [107]

    Feng T L, Ruan X L 2018 Phys. Rev. B 97 045202Google Scholar

    [108]

    Gu X K, Fan Z Y, Bao H, Zhao C Y 2019 Phys. Rev. B 100 064306Google Scholar

    [109]

    Wang J Y, Zhu L Y, Chen J, Li B W, Thong J T 2013 Adv. Mater. 25 6884Google Scholar

    [110]

    Jang W, Chen Z, Bao W Z, Lau C N, Dames C 2010 Nano Lett. 10 3909Google Scholar

    [111]

    Bae M H, Li Z Y, Aksamija A, Martin P N, Xiong F, Ong Z Y, Knezevic I, Pop E 2013 Nat. Commun. 4 1734Google Scholar

    [112]

    Harb M, Von Korff Schmising C, Enquist H, Jurgilaitis A, Maximov I, Shvets P V, Obraztsov A N, Khakhulin D, Wulff M, Larsson J 2012 Appl. Phys. Lett. 101 233108Google Scholar

    [113]

    Wei Z Y, Yang J K, Chen W Y, Bi K D, Li D Y, Chen Y F 2014 Appl. Phys. Lett. 104 081903Google Scholar

    [114]

    Fu Q, Yang J K, Chen Y F, Li D Y, Xu D Y 2015 Appl. Phys. Lett. 106 031905Google Scholar

    [115]

    Zhang H, Chen X, Jho Y D, Minnich A J 2016 Nano Lett. 16 1643Google Scholar

    [116]

    Simpson A, Stuckes A D 1971 J. Phys. C: Solid State Phys. 4 1710Google Scholar

    [117]

    Duclaux L, Nysten B, Issi J P, Moore A W 1992 Phys. Rev. B 46 3362Google Scholar

    [118]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [119]

    Lindsay L, Broido D A 2012 Phys. Rev. B 85 035436Google Scholar

    [120]

    Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L 2013 Nano Lett. 13 550Google Scholar

    [121]

    Alam M T, Bresnehan M S, Robinson J A, Haque M A 2014 Appl. Phys. Lett. 104 013113Google Scholar

    [122]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [123]

    Liu X J, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113Google Scholar

    [124]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [125]

    Liu X J, Zhang Y W 2018 Chin. Phys. B 27 034402Google Scholar

    [126]

    Jo I, Pettes M T, Ou E, Wu W, Shi L 2014 Appl. Phys. Lett. 104 201902Google Scholar

    [127]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [128]

    Bae J J, Jeong H Y, Han G H, Kim J, Kim H, Kim M S, Moon B H, Lim S C, Lee Y H 2017 Nanoscale 9 2541Google Scholar

    [129]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [130]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [131]

    Gu X K, Li B W, Yang R G 2016 J. Appl. Phys. 119 085106Google Scholar

    [132]

    Zobeiri H, Wang R D, Wang T Y, Lin H, Deng C, Wang X W 2019 Int. J. Heat Mass Transf. 133 1074Google Scholar

    [133]

    Yan Z, Jiang C, Pope T R, Tsang C F, Stickney J L, Goli P, Renteria J, Salguero T T, Balandin A A 2013 J. Appl. Phys. 114 204301Google Scholar

    [134]

    Peimyoo N, Shang J Z, Yang W H, Wang Y L, Cong C X, Yu T 2015 Nano Res. 8 1210Google Scholar

    [135]

    Zhou Y, Jang H, Woods J M, Xie Y J, Kumaravadivel P, Pan G A, Liu J B, Liu Y H, Cahill D G, Cha J J 2017 Adv. Funct. Mater. 27 1605928Google Scholar

    [136]

    Chen Y, Peng B, Cong C X, Shang J Z, Wu L S, Yang W H, Zhou J D, Yu P, Zhang H B, Wang Y L, Zou C J, Zhang J, Liu S, Xiong Q H, Shao H Z, Liu Z, Zhang H, Huang W, Yu T 2019 Adv. Mater. 31 1804979Google Scholar

    [137]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [138]

    Muratore C, Varshney V, Gengler J J, Hu J J, Bultman J E, Smith T M, Shamberger P J, Qiu B, Ruan X, Roy A K, Voevodin A A 2013 Appl. Phys. Lett. 102 081604Google Scholar

    [139]

    Liu J, Choi G M, Cahill D G 2014 J. Appl. Phys. 116 233107Google Scholar

    [140]

    Zhang Y, Zheng Y, Rui K, Hng H H, Hippalgaonkar K, Xu J W, Sun W P, Zhu J X, Yan Q Y, Huang W 2017 Small 13 1700661Google Scholar

    [141]

    Villegas C E, Rocha A R, Marini A 2016 Nano Lett. 16 5095Google Scholar

    [142]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [143]

    Hong Y, Zhang J C, Zeng X C 2018 Chin. Phys. B 27 036501Google Scholar

    [144]

    Qin G Z, Yan Q B, Qin Z Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854Google Scholar

    [145]

    Chen Y B, Chen C Y, Kealhofer R, Liu H L, Yuan Z Q, Jiang L L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M Z, Wei Z M, Li J B, Li S S, Gao H J, Liu Y Q, Analytis J, Xia Q L, Asensio M C, Wu J Q 2018 Adv. Mater. 30 1800754Google Scholar

    [146]

    Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756Google Scholar

    [147]

    Jeon S G, Shin H, Jaung Y H, Ahn J, Song J Y 2018 Nanoscale 10 5985Google Scholar

    [148]

    Lin S Q, Li W, Chen Z W, Shen J W, Ge B H, Pei Y Z 2016 Nat. Commun. 7 10287Google Scholar

    [149]

    Reed E J 2017 Nature 552 40Google Scholar

    [150]

    Du Y C, Qiu G, Wang Y X, Si M W, Xu X F, Wu W Q, Ye P D 2017 Nano Lett. 17 3965Google Scholar

    [151]

    Qiao J S, Pan Y H, Yang F, Wang C, Chai Y, Ji W 2018 Sci. Bull. 63 159Google Scholar

    [152]

    Gao Z B, Liu G, Ren J 2018 ACS Appl. Mater. Interfaces 10 40702Google Scholar

    [153]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [154]

    Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y, Zhang Z Y 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [155]

    Chen J L, Dai Y W, Ma Y Q, Dai X Q, Ho W, Xie M H 2017 Nanoscale 9 15945Google Scholar

    [156]

    Wang Y X, Qiu G, Wang Q X, Liu Y Y, Du Y C, Wang R X, Goddard Iii W A, Kim M J, Ye P D, Wu W 2018 Nat. Electron. 1 228

    [157]

    Qiu G, Huang S Y, Segovia M, Venuthurumilli P K, Wang Y X, Wu W Z, Xu X F, Ye P D 2019 Nano Lett. 19 1955Google Scholar

    [158]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [159]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [160]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [161]

    Xie H, Hu M, Bao H 2014 Appl. Phys. Lett. 104 131906Google Scholar

    [162]

    Hu M, Zhang X L, Poulikakos D 2013 Phys. Rev. B 87 195417Google Scholar

    [163]

    Qin G Z, Qin Z Z, Yue S Y, Yan Q B, Hu M 2017 Nanoscale 9 7227Google Scholar

    [164]

    Barati M, Vazifehshenas T, Salavati-Fard T, Farmanbar M 2018 J. Phys.: Condens. Matter 30 155307Google Scholar

    [165]

    Pei Q X, Zhang Y W, Sha Z D, Shenoy V B 2013 J. Appl. Phys. 114 033526Google Scholar

    [166]

    Pettes M T, Maassen J, Jo I, Lundstrom M S, Shi L 2013 Nano Lett. 13 5316Google Scholar

    [167]

    Zhou S, Tao X, Gu Y 2016 J. Phys. Chem. C 120 4753Google Scholar

    [168]

    Lee M J, Ahn J H, Sung J H, Heo H, Jeon S G, Lee W, Song J Y, Hong K H, Choi B, Lee S H, Jo M H 2016 Nat. Commun. 7 12011Google Scholar

    [169]

    Yang F, Wang R D, Zhao W W, Jiang J, Wei X, Zheng T, Yang Y T, Wang X W, Lu J P, Ni Z H 2019 Appl. Phys. Lett. 115 193103Google Scholar

    [170]

    Li D F, Gao J F, Cheng P, He J, Yin Y, Hu Y X, Chen L, Cheng Y, Zhao J J 2020 Adv. Funct. Mater. 30 1904349Google Scholar

    [171]

    Qin Z Z, Qin G Z, Zuo X, Xiong Z H, Hu M 2017 Nanoscale 9 4295Google Scholar

    [172]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X Y, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [173]

    Zhang Y Y, Pei Q X, Liu H Y, Wei N 2017 Phys. Chem. Chem. Phys. 19 27326Google Scholar

    [174]

    Nika D L, Askerov A S, Balandin A A 2012 Nano Lett. 12 3238Google Scholar

    [175]

    Majee A K, Aksamija Z 2016 Phys. Rev. B 93 235423Google Scholar

    [176]

    Park M, Lee S C, Kim Y S 2013 J. Appl. Phys. 114 053506Google Scholar

    [177]

    Wang H D, Kurata K, Fukunaga T, Zhang X, Takamatsu H 2017 Int. J. Heat Mass Transf. 105 76Google Scholar

    [178]

    Taylor R 1966 Philos. Mag. 13 157Google Scholar

    [179]

    Slack G A 1962 Phys. Rev. 127 694Google Scholar

    [180]

    Hooker C N, Ubbelohde A R, Young D A 1964 Proc. Math. Phys. Eng. Sci. 284 17Google Scholar

    [181]

    Guo Z X, Zhang D E, Gong X-G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [182]

    Gu X K, Yang R G 2014 Appl. Phys. Lett. 105 131903Google Scholar

    [183]

    Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303Google Scholar

    [184]

    D'souza R, Mukherjee S 2017 Phys. Rev. B 96 205422Google Scholar

    [185]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [186]

    郭洋裕, 王沫然 2017 中国科学: 物理学 力学 天文学 47 070010Google Scholar

    Guo Y Y, Wang M R 2017 Sci. Sin-Phys. Mech. Astron. 47 070010Google Scholar

    [187]

    Guo Y Y, Wang M R 2015 Phys. Rep. 595 1Google Scholar

    [188]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789Google Scholar

    [189]

    Narayanamurti V, Dynes R C 1972 Phys. Rev. Lett. 28 1461Google Scholar

    [190]

    Jackson H E, Walker C T, Mcnelly T F 1970 Phys. Rev. Lett. 25 26Google Scholar

    [191]

    Pohl D W, Irniger V 1976 Phys. Rev. Lett. 36 480Google Scholar

    [192]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [193]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [194]

    Machida Y, Matsumoto N, Isono T, Behnia K 2020 Science 367 309Google Scholar

    [195]

    Huberman S, Duncan R A, Chen K, Song B, Chiloyan V, Ding Z, Maznev A A, Chen G, Nelson K A 2019 Science 364 375Google Scholar

    [196]

    Yang J, Ziade E, Maragliano C, Crowder R, Wang X Y, Stefancich M, Chiesa M, Swan A K, Aaron J S 2014 J. Appl. Phys. 116 023515Google Scholar

    [197]

    Sadeghi M M, Jo I, Shi L 2013 PNAS 110 16321Google Scholar

    [198]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421Google Scholar

    [199]

    Huang S Y, Segovia M, Yang X L, Koh Y R, Wang Y X, Ye P D, Wu W Z, Shakouri A, Ruan X L, Xu X F 2020 2 D Mater. 7 015008Google Scholar

    [200]

    Sun B, Gu X K, Zeng Q S, Huang X, Yan Y X, Liu Z, Yang R G, Koh Y K 2017 Adv. Mater. 29 1603297Google Scholar

    [201]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203Google Scholar

    [202]

    Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano Lett. 14 6109Google Scholar

    [203]

    Adamyan V, Zavalniuk V 2012 J. Phys.: Condens. Matter 24 415401Google Scholar

    [204]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111Google Scholar

    [205]

    Lee W, Kihm K D, Kim H G, Shin S, Lee C, Park J S, Cheon S, Kwon O M, Lim G, Lee W 2017 Nano Lett. 17 2361Google Scholar

    [206]

    Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A 2014 Nano Lett. 14 5155Google Scholar

    [207]

    Lee D, Lee S, An B S, Kim T H, Yang C W, Suk J W, Baik S 2017 Chem. Mater. 29 10409Google Scholar

    [208]

    Malekpour H, Ramnani P, Srinivasan S, Balasubramanian G, Nika D L, Mulchandani A, Lake R K, Balandin A A 2016 Nanoscale 8 14608Google Scholar

    [209]

    Zhang H J, Lee G, Cho K 2011 Phys. Rev. B 84 115460Google Scholar

    [210]

    Lee W, Kihm K D, Lee H T, Li T, Sik Jin J, Cheon S, Kim H G, Lee W, Lim G, Pyun K R, Ko S H, Ahn S H 2019 Appl. Phys. Lett. 114 051905Google Scholar

    [211]

    Oh J, Yoo H, Choi J, Kim J Y, Lee D S, Kim M J, Lee J C, Kim W N, Grossman J C, Park J H, Lee S S, Kim H, Son J G 2017 Nano Energy 35 26Google Scholar

    [212]

    Yarali M, Brahmi H, Yan Z Q, Li X F, Xie L X, Chen S, Kumar S, Yoon M, Xiao K, Mavrokefalos A 2018 ACS Appl. Mater. Interfaces 10 4921Google Scholar

    [213]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar

    Xin H Z, Fei H P, Ying D, Hui W A 2014 Acta Phys. Sin. 63 074401Google Scholar

    [214]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [215]

    Zhao W W, Wang Y L, Wu Z T, Wang W H, Bi K D, Liang Z, Yang J K, Chen Y F, Xu Z P, Ni Z H 2015 Sci. Rep. 5 11962Google Scholar

    [216]

    Yarali M, Wu X F, Gupta T, Ghoshal D, Xie L X, Zhu Z, Brahmi H, Bao J M, Chen S, Luo T F, Koratkar N, Mavrokefalos A 2017 Adv. Funct. Mater. 27 1704357Google Scholar

    [217]

    Starr C 1936 Physics 7 15Google Scholar

    [218]

    Roberts N A, Walker D G 2011 Int. J. Therm. Sci. 50 648Google Scholar

    [219]

    Lee J, Varshney V, Roy A K, Ferguson J B, Farmer B L 2012 Nano Lett. 12 3491Google Scholar

    [220]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121Google Scholar

    [221]

    Zhu J, Hippalgaonkar K, Shen S, Wang K, Abate Y, Lee S, Wu J Q, Yin X B, Majumdar A, Zhang X 2014 Nano Lett. 14 4867Google Scholar

    [222]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [223]

    Ye Z Q, Cao B Y 2017 Nanoscale 9 11480Google Scholar

    [224]

    Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [225]

    Yang N, Zhang G, Li B W 2009 Appl. Phys. Lett. 95 033107Google Scholar

    [226]

    Arora A, Hori T, Shiga T, Shiomi J 2017 Phys. Rev. B 96 165419Google Scholar

    [227]

    Liu H X, Wang H D, Zhang X 2019 Appl. Sci. 9 344Google Scholar

    [228]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [229]

    Yang B, Li D B, Qi L, Li T B, Yang P 2019 Phys. Lett. A 383 1306Google Scholar

    [230]

    Zhang G, Zhang H S 2011 Nanoscale 3 4604Google Scholar

    [231]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [232]

    Ong Z Y, Bae M H 2019 2 D Mater. 6 032005Google Scholar

    [233]

    Pop E, Sinha S, Goodson K E 2006 Proc. IEEE 94 1587Google Scholar

    [234]

    Li X X, Yan Y P, Dong L, Guo J, Aiyiti A, Xu X F, Li B W 2017 J. Phys. D: Appl. Phys. 50 104002Google Scholar

    [235]

    Chen C C, Li Z, Shi L, Cronin S B 2014 Appl. Phys. Lett. 104 081908Google Scholar

    [236]

    Liu Y, Ong Z Y, Wu J, Zhao Y S, Watanabe K, Taniguchi T, Chi D Z, Zhang G, Thong J T, Qiu C W, Hippalgaonkar K 2017 Sci. Rep. 7 43886Google Scholar

    [237]

    Chen Z, Jang W, Bao W, Lau C N, Dames C 2009 Appl. Phys. Lett. 95 161910Google Scholar

    [238]

    Mak K F, Lui C H, Heinz T F 2010 Appl. Phys. Lett. 97 221904Google Scholar

    [239]

    Villaroman D, Wang X J, Dai W J, Gan L, Wu R Z, Luo Z T, Huang B L 2017 Carbon 123 18Google Scholar

    [240]

    Yalon E, Aslan O B, Smithe K K H, Mcclellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [241]

    Koh Y K, Bae M H, Cahill D G, Pop E 2010 Nano Lett. 10 4363Google Scholar

    [242]

    Zhang C W, Zhao W W, Bi K D, Ma J, Wang J L, Ni Z H, Ni Z H, Chen Y F 2013 Carbon 64 61Google Scholar

    [243]

    Guo J, Yang F W, Xia M G, Xu X F, Li B W 2019 J. Phys. D: Appl. Phys. 52 385306Google Scholar

    [244]

    Yuan P Y, Li C, Xu S, Liu J, Wang X W 2017 Acta Mater. 122 152Google Scholar

    [245]

    Yasaei P, Behranginia A, Hemmat Z, El-Ghandour A I, Foster C D, Salehi-Khojin A 2017 2 D Mater. 4 035027Google Scholar

    [246]

    Wang T Y, Wang R D, Yuan P Y, Xu S, Liu J, Wang X W 2017 Adv. Mater. Interfaces 4 1700233Google Scholar

    [247]

    Li M, Kang J S, Nguyen H D, Wu H, Aoki T, Hu Y 2019 Adv. Mater. 31 1901021Google Scholar

    [248]

    Choi D, Poudel N, Park S, Akinwande D, Cronin S B, Watanabe K, Taniguchi T, Yao Z, Shi L 2018 ACS Appl. Mater. Interfaces 10 11101Google Scholar

    [249]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [250]

    Liu D H, Chen X S, Yan Y P, Zhang Z W, Jin Z P, Yi K Y, Zhang C, Zheng Y J, Wang Y, Yang J, Xu X F, Chen J, Lu Y H, Wei D P, Wee A T S, Wei D C 2019 Nat. Commun. 10 1188Google Scholar

    [251]

    Little W A 1959 Can. J. Phys. 37 15Google Scholar

    [252]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [253]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

    [254]

    Foss C J, Aksamija Z 2019 2 D Mater. 6 025019Google Scholar

    [255]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno Nardelli M 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [256]

    Hopkins P E, Baraket M, Barnat E V, Beechem T E, Kearney S P, Duda J C, Robinson J T, Walton S G 2012 Nano Lett. 12 590Google Scholar

    [257]

    Koh Y K, Lyons A S, Bae M H, Huang B, Dorgan V E, Cahill D G, Pop E 2016 Nano Lett. 16 6014Google Scholar

    [258]

    Zhang C W, Chen W Y, Tao Y, Zhao W W, Cai S, Liu C H, Ni Z H, Xu D Y, Wei Z Y, Yang J K, Bi K D, Chen Y F 2017 Carbon 115 665Google Scholar

    [259]

    Zhang Y, Yan Y P, Guo J, Lu T Y, Liu J, Zhou J, Xu X F 2020 ES Energy Environ. 8 42Google Scholar

    [260]

    Lu T Y, Zhou J, Nakayama T, Yang R G, Li B W 2016 Phys. Rev. B 93 085433Google Scholar

    [261]

    Wei Y H, Zhang R Y, Zhang Y, Zheng X M, Cai W W, Ge Q, Novoselov K S, Xu Z J, Jiang T, Deng C Y, Zhang X A, Qin S Q 2020 ACS Appl. Mater. Interfaces 12 17706Google Scholar

    [262]

    Yan Z, Liu G X, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [263]

    Gao Z L, Zhang Y, Fu Y F, Yuen M M F, Liu J 2013 Carbon 61 342Google Scholar

    [264]

    Bae S H, Shabani R, Lee J B, Baeck S J, Cho H J, Ahn J H 2014 IEEE Trans. Electron Devices 61 4171

    [265]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Yang C W, Park M H, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [266]

    Wu T R, Zhang X F, Yuan Q H, Xue J C, Lu G Y, Liu Z H, Wang H S, Wang H M, Ding F, Yu Q K, Xie X M, Jiang M H 2016 Nat. Mater. 15 43Google Scholar

    [267]

    Shen B, Zhai W T, Zheng W G 2014 Adv. Funct. Mater. 24 4542Google Scholar

    [268]

    Xin G Q, Sun H T, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J 2014 Adv. Mater. 26 4521Google Scholar

    [269]

    Renteria J D, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov A I, Nika D L, Balandin A A 2015 Adv. Funct. Mater. 25 4664Google Scholar

    [270]

    Shahil K M, Balandin A A 2012 Nano Lett. 12 861Google Scholar

    [271]

    Zhang Y F, Han D, Zhao Y H, Bai S L 2016 Carbon 109 552Google Scholar

    [272]

    Loeblein M, Tsang S H, Pawlik M, Phua E J, Yong H, Zhang X W, Gan C L, Teo E H 2017 ACS Nano 11 2033Google Scholar

    [273]

    Li Z, Xu Z, Liu Y J, Wang R, Gao C 2016 Nat. Commun. 7 13684Google Scholar

    [274]

    Ghozatloo A, Rashidi A, Shariaty-Niassar M 2014 Exp. Therm. Fluid Sci. 53 136Google Scholar

    [275]

    Xu X F, Chen J, Zhou J, Li B W 2018 Adv. Mater. 30 1705544Google Scholar

    [276]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

  • 图 1  (a)热桥器件示意图; (b)器件热流图; (c)接触热阻对测量的影响; (d)和(e)悬空热桥法改良——比较器法示意图及改良前(黑色实线)和改良后(红色及蓝色)系统温漂随时间变化关系[39]

    Figure 1.  (a), (b) Sketch and heat flow of thermal bridge device; (c) influence of thermal contact resistance; (d), (e) diagram of modified comparator method and temperature drift of experimental system[39].

    图 2  电子束自加热法[54] (a)示意图; (b)热流图; (c)同济大学测量装置图; (d)利用电子束自加热法测量多层硫化钼的热导率

    Figure 2.  The electron-beam self-heating method [54]: (a) Sketch; (b) heat flow of device; (c) experimental setup in Tongji University; (d) measuring thermal conductivity of few-layer MoS2.

    图 3  (a) 拉曼法测量原理图; (b) (c) 单层悬空石墨烯拉曼G峰频率与温度以及激光能量的关系[31,61]; (d) 双拉曼法示意图[67]; (e) ET-Raman法示意图[70]

    Figure 3.  (a) Sketch of the Raman method; (b), (c) experimental data for the Raman G peak shift with respect to temperature and laser power[31,61]; (d), (e) sketch of the Two-Raman method[67] and ET-Raman method[70].

    图 4  (a)时域热反射法测量系统; (b)经正弦调制的飞秒脉冲激光、材料表面温度响应、锁相放大器所输出的同相信号和反相信号与延迟时间之间的关系; (c)采用时域热反射法测量GaN热导率及Al/GaN界面热导[33]

    Figure 4.  (a) Experimental setup of the TDTR method; (b) femtosecond pulse laser with sinusoidal modulation, temperature response of sample surface, the in-phase signal and out-of-phase signal of Lock-in Amplifier versus delay-time; (c) using TDTR method to measure thermal conductivity of GaN and interface thermal conductance of Al/GaN[33].

    图 5  (a) 悬空单层石墨烯中各声子模式贡献热导率比例[102]; (b)实验观测单层悬空石墨烯中声子的(准)弹道输运[17,35,111]

    Figure 5.  (a) Phonon modes contribution to thermal conductivity in suspended single-layer graphene[102]; (b) experimental observation of (quasi-) ballistic phonon transport in suspended single-layer graphene[17,35,111].

    图 6  实验测量石墨面间热导率与厚度的关系[112,114,115]

    Figure 6.  out-of-plane thermal conductivity of graphite versus thickness in experiment[112,114,115].

    图 7  晶体结构 (a)硫化钼[123]; (b)黑磷[48]; (c)块体碲[150]

    Figure 7.  crystal structure of (a) MoS2[123], (b) BP[48], (c) bulk Te [150].

    图 8  (a) 室温下单层悬空石墨烯中声子平均自由程[104]; (b), (c)理论及实验上单层悬空石墨烯室温热导率随长度变化[17,102,175,176]; (d)实验上不同宽度的单层石墨烯悬空热导率随温度变化[17,98,177-180]

    Figure 8.  Single-layer suspended graphene (a) the mean free path at room temperature[104]; (b), (c) length-dependent thermal conductivity in theory and experiment respectively[17,102,175,176]; (d) width-dependent thermal conductivity in experiment[17,98,177-180].

    图 9  使用拉曼法测量单层/多层硫化钼时热导率与悬空部分半径之间的关系[18,60,127,128]

    Figure 9.  Thermal conductivity of single/multi-layer MoS2 versus suspended radius using the Raman method. [18,60,127,128]

    图 10  (a) 石墨烯(悬空/衬底)面内热导率的厚度效应[64,103,110,196,197]; (b) 四层氮化硼悬空热导率与温度之间的关系[44]; (c) 氮化硼(悬空)面内热导率的厚度效应[41,44,56,120,198]; (d) 硫化钼(悬空)面内热导率的厚度效应[18]

    Figure 10.  (a) Thickness-dependent in-plane thermal conductivity of graphene (suspended and supported) [64,103,110,196,197]; (b) thermal conductivity of four-layers h-BN (suspended) versus temperature[44]; (c) thickness-dependent in-plane thermal conductivity of h-BN (suspended) [41,44,56,120,198]; (d) thickness-dependent in-plane thermal conductivity of MoS2 (suspended)[18].

    图 11  室温下黑磷面内热导率的厚度效应及各向异性[48,49,73,77,146,147,168,200]

    Figure 11.  Thickness-dependent and anisotropic in-plane thermal conductivity of the BP[48,49,73,77,146,147,168,200].

    图 12  (a) 多层黑砷悬空面内热导率的各向异性[145]; (b)黑磷沿ZZ方向、AC方向悬空面内热导率以及杨氏模量数值(300 K)[49]

    Figure 12.  (a) Anisotropic in-plane thermal conductivity of suspended few-layer BAs[145]; (b) the Young modulus and in-plane thermal conductivity of suspended BP along AC and ZZ direction respectively at 300 K[49].

    图 13  悬空石墨烯面内热导率 (a) 同位素效应[202]; (b) 晶粒尺寸的影响[205]; (c) 晶界夹角的影响[207]; (d) 空位率的影响[208]

    Figure 13.  In-plane thermal conductivity of suspended graphene: (a) Isotope effect[202]; (b) influence of grain size[205]; (c) influence of misorientation angle between grains[207]; (d) influence of vacancy ratio[208].

    图 14  悬空硫化钼面内热导率[45]: 缺陷浓度的影响

    Figure 14.  In-plane thermal conductivity of suspended MoS2 [45]: influence of defect concentration.

    图 15  微纳尺度热二极管设计原理 (a) 热导率随温度变化趋势不同; (b) 声子透射率不对称[219]; 非对称结构悬空石墨烯[224] (c)SEM图; (d) 热二极管实验结果

    Figure 15.  Design principle of thermal diode in micro/nano-scale: (a) Different tendency between thermal conductivity and temperature; (b) asymmetric phonon transmission ratio[219]; asymmetric structure of suspended graphene[224] (c) SEM image; (b) the experiment result of thermal diode.

    图 16  (a) 氮化硼厚度对金属/氮化硼/氧化硅界面热阻的影响[234]; (b)利用3ω法测量不同方法制备的氮化硼对硒化钨器件的界面热阻的影响[250]; (c)在界面处引入化学键对金属/单层石墨烯/氧化硅界面热导的影响[256]; (d) 在界面处加电压对氧化硅/多层石墨烯/氧化硅界面热阻的影响[257]

    Figure 16.  (a) Thickness-depend interfacial thermal resistance of metal/h-BN/SiO2[234]; (b) interfacial thermal resistance of WSe2 device with h-BN prepared by different method[250]; (c) improving interfacial thermal resistance of Al/single-layer graphene/SiO2 by introducing chemical bond[256]; (d) the influence of voltage at interface to interfacial thermal resistance of SiO2/graphene/ SiO2[257].

    图 17  通过氧离子束轰击改善金属与非金属的界面热阻[259]

    Figure 17.  Improving interfacial thermal resistance of metal/nonmetal by O2-plasma[259].

    图 18  (a)经高温退火的石墨烯薄膜的热导率与厚度之间的关系[90]; (b) 石墨烯与环氧树脂混合作为TIMs材料[270]

    Figure 18.  (a) Thickness-depend thermal conductivity of graphene film with high-temperature annealing[90]; (b) mixture of graphene and epoxy as TIMs [270].

    图 19  氮化硼对硒化钨以及硫化钼器件中温度分布的影响[250]: (a)−(d) SThM温度扫描图; (e)器件边界处温度变化图; (f)器件中温度分布柱状统计图

    Figure 19.  Effect of h-BN on temperature distribution in WSe2 and MoSe2 devices [250]: (a)−(d) Temperature scanned by SThM; (e) temperature variation at device boundary; (f) histogram of temperature distribution in devices.

    表 1  不同文献中测量悬空石墨烯热导率实验细节

    Table 1.  Experimental detail of thermal conductivity in suspended single/few-layer graphene from different literature.

    制备方式石墨烯层数热导率 κ /W·(m·K)–1备注
    拉曼法
    机械剥离[31]1层~4840—5300 (室温)数值高估, 见本节文字部分
    机械剥离[97]1层~3080—5150 (室温)
    化学气相沉积[66]1层~2500 +1100/–1050 (T = 350 K)/
    化学气相沉积[66]1层~1400 +500/–480 (T = 500 K)/
    化学气相沉积[98]1层~2600 — 3100 (T = 350 K)/
    机械剥离[63]1层~630 (T = 660 K)/
    机械剥离[99]1层~1800 (T = 325 K)/
    机械剥离[99]1层~710 (T = 500 K)/
    化学气相沉积[69]1层~850—1100 (T = 303—644 K)/
    机械剥离[69]1层~1500 (T = 330—445 K)/
    机械剥离[69]2层~970 (T = 303—630 K)/
    悬空热桥法
    化学气相沉积[100]1层~190(T = 280 K, L = 0.5 μm)/
    化学气相沉积[43]2层~560—620(室温, L = 5 μm)/
    化学气相沉积[17]1层~1689—1831(T = 300 K, L = 9 μm)/
    SThM
    化学气相沉积[85]1层~2100—2430(T = 335 K)/
    DownLoad: CSV

    表 2  不同实验中悬空单层/多层h-BN热导率实验测量细节表

    Table 2.  Experimental detail of thermal conductivity of suspended single/few-layer h-BN in different literature.

    制备方式氮化硼薄膜层数测量方法热导率(室温/300 K)
    κ /(W(m·K)–1)
    机械剥离[120]5层微桥电阻温度计法~250
    机械剥离[120]11层微桥电阻温度计法~360
    化学气相沉积[62]9层拉曼法~227—280
    化学气相沉积[57]2.1 nm拉曼法~223
    化学气相沉积[121]10 nm/20 nm稳态/瞬态~100
    机械剥离[41]2层热桥法~484 +141/–24
    机械剥离[44]4层热桥法~286
    机械剥离[56]1层拉曼法751 ± 340
    机械剥离[56]2层拉曼法646 ± 242
    机械剥离[56]3层拉曼法602 ± 247
    DownLoad: CSV

    表 3  不同文献中硫化钼单层/多层热导率实验测量细节表

    Table 3.  Experimental detail of thermal conductivity of single/few-layer MoS2 in different literature.

    制备方式硫化钼薄膜层数测量方法热导率 (300 K/室温)
    κ /(W·(m·K)–1)
    悬空
    化学气相沉积[59]11层拉曼法~52
    机械剥离[60]1层拉曼法34.5 ± 4
    机械剥离[126]4层热桥法~44—45
    机械剥离[126]7层热桥法~48—52
    机械剥离[127]1层拉曼法84 ± 17
    机械剥离[127]2层拉曼法77 ± 25
    机械剥离[54]4层电子束自加热34 ± 6
    机械剥离[54]5层电子束自加热30 ± 3
    化学气相沉积[128]1层拉曼法13.3 ± 1.4
    化学气相沉积[128]2层拉曼法15.6 ± 1.5
    化学气相沉积[47]1层热桥法~21—24
    化学气相沉积[18]1层拉曼法60.3 ± 5.2
    化学气相沉积[18]2层拉曼法38.4 ± 3.1
    化学气相沉积[18]3层拉曼法44.8 ± 5.9
    化学气相沉积[18]4层拉曼法36.9 ± 4.9
    衬底
    机械剥离[129]1层拉曼法~62.2
    机械剥离[65]4层拉曼法60.3 ± 5
    DownLoad: CSV

    表 4  除硫化钼外, 其他单层/多层过渡金属硫化物的悬空热导率实验测量细节表

    Table 4.  Experimental detail of thermal conductivity of single/few-layer transition metal sulfide (expect MoS2) in different literature.

    制备方式薄膜层数测量方法热导率 (300 K/室温)
    κ/(W·(m·K)–1)
    硒化钼
    机械剥离[127]1层拉曼法59 ± 18
    机械剥离[127]2层拉曼法42 ± 13
    机械剥离[70]45 nm拉曼法11.1 ± 0.4
    机械剥离[70]140 nm拉曼法20.3 ± 0.9
    机械剥离[132]5 nm拉曼法6.2 ± 0.9
    机械剥离[132]36 nm拉曼法10.8 ± 1.7
    硒化钽
    机械剥离[133]45 nm拉曼法~9
    机械剥离[133]55 nm拉曼法~11
    硫化钨
    化学气相沉积[134]1层拉曼法~32
    化学气相沉积[134]2层拉曼法~53
    化学气相沉积[18]1层拉曼法74.8 ± 17.2
    硒化钨
    化学气相沉积[18]1层拉曼法66 ± 20.9
    碲化钨
    机械剥离[135]220 nmTDTR~2
    机械剥离[136]11.2 nm拉曼~0.639—0.743
    硫化铼
    机械剥离[137]150 nmTDTR~50—70
    DownLoad: CSV

    表 5  常见二维材料的界面热导实验测量值

    Table 5.  Experimental results of interfacial thermal conductance of two-dimensional materials.

    界面结构室温界面热导界面结构室温界面热导
    Gint/MW·(m2·K)–1Gint/MW·(m2·K)–1
    石墨烯 (G)G/h-BN[235]~17
    MoS2/h-BN[236]~52.2
    SiO2/G/SiO2[237]~83—179硫化钼 (MoS2)、硒化钼 (MoSe2)
    G/SiO2[238]~50
    G/Al2O3[239]~17MoS2/SiO2 or AlN[240]~15
    Au/Ti/G/SiO2[241]~25MoS2/Au[127]~0.44—0.74
    Au/Ti/G/SiO2[196]~20MoS2/SiO2[129]~1.94
    Al/G/Si[242]~62—65MoS2/SiO2[243]~14
    Al/G/SiO2[242]~21—24MoS2/SiO2[244]~21
    Au/Ti/G/sapphire[245]~33.5MoSe2/SiO2[127]~0.09—0.13
    Au/Ti/G/diamond[245]~6.2MoSe2/SiO2[243]~2
    G/Au[76]~23黑磷 (BP)
    G/Al[76]~27
    G/Ti[76]~31BP/SiOX[246]~21.7—114
    G/Au[66]~18.8—44BP/SiOX[247]~202—60
    氮化硼 (h-BN)硒化钨 (WSe2)
    h-BN/SiO2/Si[248]~8.3WSe2/Si/SiO2[249]~10—32
    Metal/h-BN/SiO2[234]~29—63WSe2/SiO2[250]~22
    DownLoad: CSV
  • [1]

    Moore G E 1998 P. IEEE 86 82Google Scholar

    [2]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [3]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [4]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Gu X K, Wei Y J, Yin X B, Li B W, Yang R G 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [7]

    Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [8]

    Yang N, Xu X F, Zhang G, Li B W 2012 AIP Adv. 2 041410Google Scholar

    [9]

    Liu S, Xu X F, Xie R G, Zhang G, Li B W 2012 Eur. Phys. J. B 85 337Google Scholar

    [10]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [11]

    Yang L, Grassberger P, Hu B 2006 Phys. Rev. E 74 062101Google Scholar

    [12]

    Wang L, Hu B, Li B W 2012 Phys. Rev. E 86 040101(R)Google Scholar

    [13]

    Li Q Y, Takahashi K, Zhang X 2017 Phys. Rev. Lett. 119 179601Google Scholar

    [14]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2018 arXiv: 1806.11315 [cond-mat.mes-hall]

    [15]

    Li Q Y 2018 arXiv: 1807.09990 [cond-mat.mtrl-sci]

    [16]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [17]

    Xu X F, Pereira L F, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Bui C T, Xie R G, Thong J T, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [18]

    Yu Y, Minhaj T, Huang L, Yu Y, Cao L 2020 Phys. Rew. Applied 13 034059Google Scholar

    [19]

    侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809Google Scholar

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809Google Scholar

    [20]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [21]

    Xu X F, Chen J, Li B W 2016 J. Phys.: Condens. Matter 28 483001Google Scholar

    [22]

    Gu X K, Yang R G 2016 Annual Review of Heat Transfer 19 1Google Scholar

    [23]

    Fu Y F, Hansson J, Liu Y, Chen S J, Zehri A, Samani M K, Wang N, Ni Y X, Zhang Y, Zhang Z-B, Wang Q L, Li M X, Lu H B, Sledzinska M, Torres C M S, Volz S, Balandin A A, Xu X F, Liu J 2020 2 D Mater. 7 012001Google Scholar

    [24]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [25]

    Zhao Y S, Cai Y Q, Zhang L F, Li B W, Zhang G, Thong J T L 2020 Adv. Funct. Mater. 30 1903929Google Scholar

    [26]

    Zhang G, Zhang Y W 2017 Chin. Phys. B 26 034401Google Scholar

    [27]

    Qiu L, Zhu N, Feng Y H, Michaelides E E, Żyła G, Jing D W, Zhang X X, Norris P M, Markides C N, Mahian O 2020 Phys. Rep. 843 1Google Scholar

    [28]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [29]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Li S 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [30]

    Shi L, Li D Y, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [31]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [32]

    Cahill D G, Katiyar M, Abelson J R 1994 Phys. Rev. B 50 6077Google Scholar

    [33]

    Jiang P Q, Qian X, Yang R G 2018 J. Appl. Phys. 124 161103Google Scholar

    [34]

    Bozlar M, He D, Bai J, Chalopin Y, Mingo N, Volz S 2010 Adv. Mater. 22 1654Google Scholar

    [35]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502Google Scholar

    [36]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 R2514Google Scholar

    [37]

    Hochbaum A I, Chen R K, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P D 2008 Nature 451 163Google Scholar

    [38]

    Guo J, Huang Y, Wu X S, Wang Q L, Zhou X J, Xu X F, Li B W 2019 Phys. Status Solidi RRL 13 1800529Google Scholar

    [39]

    Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W 2018 Natl. Sci. Rev. 5 500Google Scholar

    [40]

    Aiyiti A, Zhang Z W, Chen B S, Hu S Q, Chen J, Xu X F, Li B W 2018 Carbon 140 673Google Scholar

    [41]

    Wang C R, Guo J, Dong L, Aiyiti A, Xu X F, Li B W 2016 Sci. Rep. 6 25334Google Scholar

    [42]

    Wang Z Q, Xie R G, Bui C T, Liu D, Ni X X, Li B W, Thong J T 2011 Nano Lett. 11 113Google Scholar

    [43]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [44]

    郭劼, 王成如, 董岚, 徐象繁 2017 工程热物理学报 38 2220

    Guo J, Wang C R, Dong L, Xu X F 2017 J. Eng. Thermophys. 38 2220

    [45]

    Aiyiti A, Hu S Q, Wang C R, Xi Q, Cheng Z F, Xia M G, Ma Y L, Wu J B, Guo J, Wang Q L, Zhou J, Chen J, Xu X F, Li B W 2018 Nanoscale 10 2727Google Scholar

    [46]

    Yang X, Li X Q, Deng Y, Wang Y X, Liu G L, Wei C, Li H, Wu Z, Zheng Q H, Chen Z W, Jiang Q, Lu H M, Zhu J 2019 Adv. Funct. Mater. 29 1902427Google Scholar

    [47]

    Zhao Y S, Zheng M R, Wu J, Huang B J, Thong J T L 2020 Nanotechnology 31 225702Google Scholar

    [48]

    Lee S, Yang F, Suh J, Yang S J, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y B, Ko C, Park J, Liu K, Li J B, Hippalgaonkar K, Urban J J, Tongay S, Wu J Q 2015 Nat. Commun. 6 8573Google Scholar

    [49]

    Zhao Y S, Zhang G, Nai M H, Ding G, Li D F, Liu Y, Hippalgaonkar K, Lim C T, Chi D Z, Li B W, Wu J, Thong J T L 2018 Adv. Mater. 30 1804928Google Scholar

    [50]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [51]

    Wang Q L, Chen Y Y, Aiyiti A, Zheng M R, Li N B, Xu X F 2020 Chin. Phys. B 29 084402

    [52]

    Wingert M C, Chen Z C, Kwon S, Xiang J, Chen R K 2012 Rev. Sci. Instrum. 83 024901Google Scholar

    [53]

    Zheng J L, Wingert M C, Dechaumphai E, Chen R C 2013 Rev. Sci. Instrum. 84 114901Google Scholar

    [54]

    Adili A, Bai X, Wu J, Xu X F, Li B W 2018 Sci. Bull. 63 452Google Scholar

    [55]

    Liu D, Xie R G, Yang N, Li B W, Thong J T 2014 Nano Lett. 14 806Google Scholar

    [56]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos Elton J G, Li L H 2019 Sci. Adv. 5 eaav0129Google Scholar

    [57]

    Lin Z Y, Liu C R, Chai Y 2016 2D Mater. 3 041009Google Scholar

    [58]

    Luo Z, Maassen J, Deng Y X, Du Y C, Garrelts R P, Lundstrom M S, Ye P D, Xu X F 2015 Nat. Commun. 6 8572Google Scholar

    [59]

    Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F, Katiyar R S 2013 J. Phys. Chem. C 117 9042Google Scholar

    [60]

    Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X F, Andras K, Tengfei L, Angela R H W, Xing H G 2014 ACS Nano 8 986Google Scholar

    [61]

    Calizo I, Balandin A A, Bao W, Miao F, Lau C N 2007 Nano Lett. 7 2645Google Scholar

    [62]

    Zhou H Q, Zhu J X, Liu Z, Yan Z, Fan X J, Lin J, Wang G, Yan Q Y, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [63]

    Faugeras C, Faugeras B, Orlita M, Potemski M, Nair R R, Geim A K 2010 ACS Nano 4 1889Google Scholar

    [64]

    Ghosh S, Bao W Z, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [65]

    Yuan P Y, Wang R D, Wang T Y, Wang X W, Xie Y S 2018 Phys. Chem. Chem. Phys. 20 25752Google Scholar

    [66]

    Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [67]

    Reparaz J S, Chavez-Angel E, Wagner M R, Graczykowski B, Gomis-Bresco J, Alzina F, Sotomayor Torres C M 2014 Rev. Sci. Instrum. 85 034901Google Scholar

    [68]

    Li Q Y, Ma W G, Zhang X 2016 Int. J. Heat Mass Transf. 95 956Google Scholar

    [69]

    Li Q Y, Xia K L, Zhang J, Zhang Y Y, Li Q Y, Takahashi K, Zhang X 2017 Nanoscale 9 10784Google Scholar

    [70]

    Wang R D, Wang T Y, Zobeiri H, Yuan P Y, Deng C, Yue Y N, Xu S, Wang X W 2018 Nanoscale 10 23087Google Scholar

    [71]

    Xu S, Fan A, Wang H D, Zhang X, Wang X W 2020 Int. J. Heat Mass Transf. 154 119751Google Scholar

    [72]

    Eesley G L 1983 Phys. Rev. Lett. 51 2140Google Scholar

    [73]

    Islam A, Van Den Akker A, Feng P X 2018 Nano Lett. 18 7683Google Scholar

    [74]

    Sood A, Xiong F, Chen S, Cheaito R, Lian F F, Asheghi M, Cui Y, Donadio D, Goodson K E, Pop E 2019 Nano Lett. 19 2434Google Scholar

    [75]

    Jiang P Q, Qian X, Gu X K, Yang R G 2017 Adv. Mater. 29 1701068Google Scholar

    [76]

    Schmidt A J, Collins K C, Minnich A J, Chen G 2010 J. Appl. Phys. 107 104907Google Scholar

    [77]

    Jang H, Wood J D, Ryder C R, Hersam M C, Cahill D G 2015 Adv. Mater. 27 8017Google Scholar

    [78]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351Google Scholar

    [79]

    Cahill D G 2018 MRS Bull. 43 782Google Scholar

    [80]

    Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A 2013 Sci. Rep. 3 2963Google Scholar

    [81]

    Kimling J, Philippi-Kob A, Jacobsohn J, Oepen H P, Cahill D G 2017 Phys. Rev. B 95 184305Google Scholar

    [82]

    D'acremont Q, Pernot G, Rampnoux J M, Furlan A, Lacroix D, Ludwig A, Dilhaire S 2017 Rev. Sci. Instrum. 88 074902Google Scholar

    [83]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802Google Scholar

    [84]

    丰平, 王太宏 2003 物理学报 52 2249Google Scholar

    Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249Google Scholar

    [85]

    Yoon K, Hwang G, Chung J, Kim H G, Kwon O, Kihm K D, Lee J S 2014 Carbon 76 77Google Scholar

    [86]

    Zhang Y, Zhang C, Wei D C, Bai X, Xu X F 2019 CrystEngComm 21 5402Google Scholar

    [87]

    Zhang Y, Zhu W K, Hui F, Lanza M, Borca-Tasciuc T, Muñoz Rojo M 2019 Adv. Funct. Mater. 30 1900892Google Scholar

    [88]

    Kim J, Seo D J, Park H, Kim H, Choi H J, Kim W 2017 Rev. Sci. Instrum. 88 054902Google Scholar

    [89]

    Kim J, Ou E, Sellan D P, Shi L 2015 Rev. Sci. Instrum. 86 044901Google Scholar

    [90]

    Wang N, Samani M K, Li H, Dong L, Zhang Z W, Su P, Chen S J, Chen J, Huang S R, Yuan G J, Xu X F, Li B W, Leifer K, Ye L L, Liu J 2018 Small 14 e1801346Google Scholar

    [91]

    Rojo M M, Calero O C, Lopeandia A F, Rodriguez-Viejo J, Martin-Gonzalez M 2013 Nanoscale 5 11526Google Scholar

    [92]

    Wang Y X, Xu N, Li D Y, Zhu J 2017 Adv. Funct. Mater. 27 1604134Google Scholar

    [93]

    Xian Y Q, Zhang P, Zhai S P, Yuan P, Yang D G 2018 Appl. Therm. Eng. 130 1530Google Scholar

    [94]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [95]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [96]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [97]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [98]

    Chen S S, Moore A L, Cai W W, Suk J W, An J, Mishra C, Amos C, Magnuson C W, Kang J Y, Shi L, Ruoff R S 2011 ACS Nano 5 321Google Scholar

    [99]

    Lee J U, Yoon D, Kim H, Lee S W, Cheong H 2011 Phys. Rev. B 83 081419Google Scholar

    [100]

    Xu X F, Wang Y, Zhang K W, Zhao X M, Bae S, Heinrich M, Bui C T, Xie R G, Thong J T L, Hong B, Loh K P, Li B W, Barbaros O 2010 arXiv: 1012.2937 [cond-mat.mes-hall]

    [101]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [102]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

    [103]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [104]

    Mei S, Maurer L N, Aksamija Z, Knezevic I 2014 J. Appl. Phys. 116 164307Google Scholar

    [105]

    Munoz E, Lu J, Yakobson B I 2010 Nano Lett. 10 1652Google Scholar

    [106]

    Feng T L, Lindsay L, Ruan X L 2017 Phys. Rev. B 96 161201(R)Google Scholar

    [107]

    Feng T L, Ruan X L 2018 Phys. Rev. B 97 045202Google Scholar

    [108]

    Gu X K, Fan Z Y, Bao H, Zhao C Y 2019 Phys. Rev. B 100 064306Google Scholar

    [109]

    Wang J Y, Zhu L Y, Chen J, Li B W, Thong J T 2013 Adv. Mater. 25 6884Google Scholar

    [110]

    Jang W, Chen Z, Bao W Z, Lau C N, Dames C 2010 Nano Lett. 10 3909Google Scholar

    [111]

    Bae M H, Li Z Y, Aksamija A, Martin P N, Xiong F, Ong Z Y, Knezevic I, Pop E 2013 Nat. Commun. 4 1734Google Scholar

    [112]

    Harb M, Von Korff Schmising C, Enquist H, Jurgilaitis A, Maximov I, Shvets P V, Obraztsov A N, Khakhulin D, Wulff M, Larsson J 2012 Appl. Phys. Lett. 101 233108Google Scholar

    [113]

    Wei Z Y, Yang J K, Chen W Y, Bi K D, Li D Y, Chen Y F 2014 Appl. Phys. Lett. 104 081903Google Scholar

    [114]

    Fu Q, Yang J K, Chen Y F, Li D Y, Xu D Y 2015 Appl. Phys. Lett. 106 031905Google Scholar

    [115]

    Zhang H, Chen X, Jho Y D, Minnich A J 2016 Nano Lett. 16 1643Google Scholar

    [116]

    Simpson A, Stuckes A D 1971 J. Phys. C: Solid State Phys. 4 1710Google Scholar

    [117]

    Duclaux L, Nysten B, Issi J P, Moore A W 1992 Phys. Rev. B 46 3362Google Scholar

    [118]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [119]

    Lindsay L, Broido D A 2012 Phys. Rev. B 85 035436Google Scholar

    [120]

    Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L 2013 Nano Lett. 13 550Google Scholar

    [121]

    Alam M T, Bresnehan M S, Robinson J A, Haque M A 2014 Appl. Phys. Lett. 104 013113Google Scholar

    [122]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [123]

    Liu X J, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113Google Scholar

    [124]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [125]

    Liu X J, Zhang Y W 2018 Chin. Phys. B 27 034402Google Scholar

    [126]

    Jo I, Pettes M T, Ou E, Wu W, Shi L 2014 Appl. Phys. Lett. 104 201902Google Scholar

    [127]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [128]

    Bae J J, Jeong H Y, Han G H, Kim J, Kim H, Kim M S, Moon B H, Lim S C, Lee Y H 2017 Nanoscale 9 2541Google Scholar

    [129]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [130]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [131]

    Gu X K, Li B W, Yang R G 2016 J. Appl. Phys. 119 085106Google Scholar

    [132]

    Zobeiri H, Wang R D, Wang T Y, Lin H, Deng C, Wang X W 2019 Int. J. Heat Mass Transf. 133 1074Google Scholar

    [133]

    Yan Z, Jiang C, Pope T R, Tsang C F, Stickney J L, Goli P, Renteria J, Salguero T T, Balandin A A 2013 J. Appl. Phys. 114 204301Google Scholar

    [134]

    Peimyoo N, Shang J Z, Yang W H, Wang Y L, Cong C X, Yu T 2015 Nano Res. 8 1210Google Scholar

    [135]

    Zhou Y, Jang H, Woods J M, Xie Y J, Kumaravadivel P, Pan G A, Liu J B, Liu Y H, Cahill D G, Cha J J 2017 Adv. Funct. Mater. 27 1605928Google Scholar

    [136]

    Chen Y, Peng B, Cong C X, Shang J Z, Wu L S, Yang W H, Zhou J D, Yu P, Zhang H B, Wang Y L, Zou C J, Zhang J, Liu S, Xiong Q H, Shao H Z, Liu Z, Zhang H, Huang W, Yu T 2019 Adv. Mater. 31 1804979Google Scholar

    [137]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [138]

    Muratore C, Varshney V, Gengler J J, Hu J J, Bultman J E, Smith T M, Shamberger P J, Qiu B, Ruan X, Roy A K, Voevodin A A 2013 Appl. Phys. Lett. 102 081604Google Scholar

    [139]

    Liu J, Choi G M, Cahill D G 2014 J. Appl. Phys. 116 233107Google Scholar

    [140]

    Zhang Y, Zheng Y, Rui K, Hng H H, Hippalgaonkar K, Xu J W, Sun W P, Zhu J X, Yan Q Y, Huang W 2017 Small 13 1700661Google Scholar

    [141]

    Villegas C E, Rocha A R, Marini A 2016 Nano Lett. 16 5095Google Scholar

    [142]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [143]

    Hong Y, Zhang J C, Zeng X C 2018 Chin. Phys. B 27 036501Google Scholar

    [144]

    Qin G Z, Yan Q B, Qin Z Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854Google Scholar

    [145]

    Chen Y B, Chen C Y, Kealhofer R, Liu H L, Yuan Z Q, Jiang L L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M Z, Wei Z M, Li J B, Li S S, Gao H J, Liu Y Q, Analytis J, Xia Q L, Asensio M C, Wu J Q 2018 Adv. Mater. 30 1800754Google Scholar

    [146]

    Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756Google Scholar

    [147]

    Jeon S G, Shin H, Jaung Y H, Ahn J, Song J Y 2018 Nanoscale 10 5985Google Scholar

    [148]

    Lin S Q, Li W, Chen Z W, Shen J W, Ge B H, Pei Y Z 2016 Nat. Commun. 7 10287Google Scholar

    [149]

    Reed E J 2017 Nature 552 40Google Scholar

    [150]

    Du Y C, Qiu G, Wang Y X, Si M W, Xu X F, Wu W Q, Ye P D 2017 Nano Lett. 17 3965Google Scholar

    [151]

    Qiao J S, Pan Y H, Yang F, Wang C, Chai Y, Ji W 2018 Sci. Bull. 63 159Google Scholar

    [152]

    Gao Z B, Liu G, Ren J 2018 ACS Appl. Mater. Interfaces 10 40702Google Scholar

    [153]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [154]

    Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y, Zhang Z Y 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [155]

    Chen J L, Dai Y W, Ma Y Q, Dai X Q, Ho W, Xie M H 2017 Nanoscale 9 15945Google Scholar

    [156]

    Wang Y X, Qiu G, Wang Q X, Liu Y Y, Du Y C, Wang R X, Goddard Iii W A, Kim M J, Ye P D, Wu W 2018 Nat. Electron. 1 228

    [157]

    Qiu G, Huang S Y, Segovia M, Venuthurumilli P K, Wang Y X, Wu W Z, Xu X F, Ye P D 2019 Nano Lett. 19 1955Google Scholar

    [158]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [159]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [160]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [161]

    Xie H, Hu M, Bao H 2014 Appl. Phys. Lett. 104 131906Google Scholar

    [162]

    Hu M, Zhang X L, Poulikakos D 2013 Phys. Rev. B 87 195417Google Scholar

    [163]

    Qin G Z, Qin Z Z, Yue S Y, Yan Q B, Hu M 2017 Nanoscale 9 7227Google Scholar

    [164]

    Barati M, Vazifehshenas T, Salavati-Fard T, Farmanbar M 2018 J. Phys.: Condens. Matter 30 155307Google Scholar

    [165]

    Pei Q X, Zhang Y W, Sha Z D, Shenoy V B 2013 J. Appl. Phys. 114 033526Google Scholar

    [166]

    Pettes M T, Maassen J, Jo I, Lundstrom M S, Shi L 2013 Nano Lett. 13 5316Google Scholar

    [167]

    Zhou S, Tao X, Gu Y 2016 J. Phys. Chem. C 120 4753Google Scholar

    [168]

    Lee M J, Ahn J H, Sung J H, Heo H, Jeon S G, Lee W, Song J Y, Hong K H, Choi B, Lee S H, Jo M H 2016 Nat. Commun. 7 12011Google Scholar

    [169]

    Yang F, Wang R D, Zhao W W, Jiang J, Wei X, Zheng T, Yang Y T, Wang X W, Lu J P, Ni Z H 2019 Appl. Phys. Lett. 115 193103Google Scholar

    [170]

    Li D F, Gao J F, Cheng P, He J, Yin Y, Hu Y X, Chen L, Cheng Y, Zhao J J 2020 Adv. Funct. Mater. 30 1904349Google Scholar

    [171]

    Qin Z Z, Qin G Z, Zuo X, Xiong Z H, Hu M 2017 Nanoscale 9 4295Google Scholar

    [172]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X Y, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [173]

    Zhang Y Y, Pei Q X, Liu H Y, Wei N 2017 Phys. Chem. Chem. Phys. 19 27326Google Scholar

    [174]

    Nika D L, Askerov A S, Balandin A A 2012 Nano Lett. 12 3238Google Scholar

    [175]

    Majee A K, Aksamija Z 2016 Phys. Rev. B 93 235423Google Scholar

    [176]

    Park M, Lee S C, Kim Y S 2013 J. Appl. Phys. 114 053506Google Scholar

    [177]

    Wang H D, Kurata K, Fukunaga T, Zhang X, Takamatsu H 2017 Int. J. Heat Mass Transf. 105 76Google Scholar

    [178]

    Taylor R 1966 Philos. Mag. 13 157Google Scholar

    [179]

    Slack G A 1962 Phys. Rev. 127 694Google Scholar

    [180]

    Hooker C N, Ubbelohde A R, Young D A 1964 Proc. Math. Phys. Eng. Sci. 284 17Google Scholar

    [181]

    Guo Z X, Zhang D E, Gong X-G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [182]

    Gu X K, Yang R G 2014 Appl. Phys. Lett. 105 131903Google Scholar

    [183]

    Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303Google Scholar

    [184]

    D'souza R, Mukherjee S 2017 Phys. Rev. B 96 205422Google Scholar

    [185]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [186]

    郭洋裕, 王沫然 2017 中国科学: 物理学 力学 天文学 47 070010Google Scholar

    Guo Y Y, Wang M R 2017 Sci. Sin-Phys. Mech. Astron. 47 070010Google Scholar

    [187]

    Guo Y Y, Wang M R 2015 Phys. Rep. 595 1Google Scholar

    [188]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789Google Scholar

    [189]

    Narayanamurti V, Dynes R C 1972 Phys. Rev. Lett. 28 1461Google Scholar

    [190]

    Jackson H E, Walker C T, Mcnelly T F 1970 Phys. Rev. Lett. 25 26Google Scholar

    [191]

    Pohl D W, Irniger V 1976 Phys. Rev. Lett. 36 480Google Scholar

    [192]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [193]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [194]

    Machida Y, Matsumoto N, Isono T, Behnia K 2020 Science 367 309Google Scholar

    [195]

    Huberman S, Duncan R A, Chen K, Song B, Chiloyan V, Ding Z, Maznev A A, Chen G, Nelson K A 2019 Science 364 375Google Scholar

    [196]

    Yang J, Ziade E, Maragliano C, Crowder R, Wang X Y, Stefancich M, Chiesa M, Swan A K, Aaron J S 2014 J. Appl. Phys. 116 023515Google Scholar

    [197]

    Sadeghi M M, Jo I, Shi L 2013 PNAS 110 16321Google Scholar

    [198]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421Google Scholar

    [199]

    Huang S Y, Segovia M, Yang X L, Koh Y R, Wang Y X, Ye P D, Wu W Z, Shakouri A, Ruan X L, Xu X F 2020 2 D Mater. 7 015008Google Scholar

    [200]

    Sun B, Gu X K, Zeng Q S, Huang X, Yan Y X, Liu Z, Yang R G, Koh Y K 2017 Adv. Mater. 29 1603297Google Scholar

    [201]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203Google Scholar

    [202]

    Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano Lett. 14 6109Google Scholar

    [203]

    Adamyan V, Zavalniuk V 2012 J. Phys.: Condens. Matter 24 415401Google Scholar

    [204]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111Google Scholar

    [205]

    Lee W, Kihm K D, Kim H G, Shin S, Lee C, Park J S, Cheon S, Kwon O M, Lim G, Lee W 2017 Nano Lett. 17 2361Google Scholar

    [206]

    Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A 2014 Nano Lett. 14 5155Google Scholar

    [207]

    Lee D, Lee S, An B S, Kim T H, Yang C W, Suk J W, Baik S 2017 Chem. Mater. 29 10409Google Scholar

    [208]

    Malekpour H, Ramnani P, Srinivasan S, Balasubramanian G, Nika D L, Mulchandani A, Lake R K, Balandin A A 2016 Nanoscale 8 14608Google Scholar

    [209]

    Zhang H J, Lee G, Cho K 2011 Phys. Rev. B 84 115460Google Scholar

    [210]

    Lee W, Kihm K D, Lee H T, Li T, Sik Jin J, Cheon S, Kim H G, Lee W, Lim G, Pyun K R, Ko S H, Ahn S H 2019 Appl. Phys. Lett. 114 051905Google Scholar

    [211]

    Oh J, Yoo H, Choi J, Kim J Y, Lee D S, Kim M J, Lee J C, Kim W N, Grossman J C, Park J H, Lee S S, Kim H, Son J G 2017 Nano Energy 35 26Google Scholar

    [212]

    Yarali M, Brahmi H, Yan Z Q, Li X F, Xie L X, Chen S, Kumar S, Yoon M, Xiao K, Mavrokefalos A 2018 ACS Appl. Mater. Interfaces 10 4921Google Scholar

    [213]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar

    Xin H Z, Fei H P, Ying D, Hui W A 2014 Acta Phys. Sin. 63 074401Google Scholar

    [214]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [215]

    Zhao W W, Wang Y L, Wu Z T, Wang W H, Bi K D, Liang Z, Yang J K, Chen Y F, Xu Z P, Ni Z H 2015 Sci. Rep. 5 11962Google Scholar

    [216]

    Yarali M, Wu X F, Gupta T, Ghoshal D, Xie L X, Zhu Z, Brahmi H, Bao J M, Chen S, Luo T F, Koratkar N, Mavrokefalos A 2017 Adv. Funct. Mater. 27 1704357Google Scholar

    [217]

    Starr C 1936 Physics 7 15Google Scholar

    [218]

    Roberts N A, Walker D G 2011 Int. J. Therm. Sci. 50 648Google Scholar

    [219]

    Lee J, Varshney V, Roy A K, Ferguson J B, Farmer B L 2012 Nano Lett. 12 3491Google Scholar

    [220]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121Google Scholar

    [221]

    Zhu J, Hippalgaonkar K, Shen S, Wang K, Abate Y, Lee S, Wu J Q, Yin X B, Majumdar A, Zhang X 2014 Nano Lett. 14 4867Google Scholar

    [222]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [223]

    Ye Z Q, Cao B Y 2017 Nanoscale 9 11480Google Scholar

    [224]

    Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [225]

    Yang N, Zhang G, Li B W 2009 Appl. Phys. Lett. 95 033107Google Scholar

    [226]

    Arora A, Hori T, Shiga T, Shiomi J 2017 Phys. Rev. B 96 165419Google Scholar

    [227]

    Liu H X, Wang H D, Zhang X 2019 Appl. Sci. 9 344Google Scholar

    [228]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [229]

    Yang B, Li D B, Qi L, Li T B, Yang P 2019 Phys. Lett. A 383 1306Google Scholar

    [230]

    Zhang G, Zhang H S 2011 Nanoscale 3 4604Google Scholar

    [231]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [232]

    Ong Z Y, Bae M H 2019 2 D Mater. 6 032005Google Scholar

    [233]

    Pop E, Sinha S, Goodson K E 2006 Proc. IEEE 94 1587Google Scholar

    [234]

    Li X X, Yan Y P, Dong L, Guo J, Aiyiti A, Xu X F, Li B W 2017 J. Phys. D: Appl. Phys. 50 104002Google Scholar

    [235]

    Chen C C, Li Z, Shi L, Cronin S B 2014 Appl. Phys. Lett. 104 081908Google Scholar

    [236]

    Liu Y, Ong Z Y, Wu J, Zhao Y S, Watanabe K, Taniguchi T, Chi D Z, Zhang G, Thong J T, Qiu C W, Hippalgaonkar K 2017 Sci. Rep. 7 43886Google Scholar

    [237]

    Chen Z, Jang W, Bao W, Lau C N, Dames C 2009 Appl. Phys. Lett. 95 161910Google Scholar

    [238]

    Mak K F, Lui C H, Heinz T F 2010 Appl. Phys. Lett. 97 221904Google Scholar

    [239]

    Villaroman D, Wang X J, Dai W J, Gan L, Wu R Z, Luo Z T, Huang B L 2017 Carbon 123 18Google Scholar

    [240]

    Yalon E, Aslan O B, Smithe K K H, Mcclellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [241]

    Koh Y K, Bae M H, Cahill D G, Pop E 2010 Nano Lett. 10 4363Google Scholar

    [242]

    Zhang C W, Zhao W W, Bi K D, Ma J, Wang J L, Ni Z H, Ni Z H, Chen Y F 2013 Carbon 64 61Google Scholar

    [243]

    Guo J, Yang F W, Xia M G, Xu X F, Li B W 2019 J. Phys. D: Appl. Phys. 52 385306Google Scholar

    [244]

    Yuan P Y, Li C, Xu S, Liu J, Wang X W 2017 Acta Mater. 122 152Google Scholar

    [245]

    Yasaei P, Behranginia A, Hemmat Z, El-Ghandour A I, Foster C D, Salehi-Khojin A 2017 2 D Mater. 4 035027Google Scholar

    [246]

    Wang T Y, Wang R D, Yuan P Y, Xu S, Liu J, Wang X W 2017 Adv. Mater. Interfaces 4 1700233Google Scholar

    [247]

    Li M, Kang J S, Nguyen H D, Wu H, Aoki T, Hu Y 2019 Adv. Mater. 31 1901021Google Scholar

    [248]

    Choi D, Poudel N, Park S, Akinwande D, Cronin S B, Watanabe K, Taniguchi T, Yao Z, Shi L 2018 ACS Appl. Mater. Interfaces 10 11101Google Scholar

    [249]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [250]

    Liu D H, Chen X S, Yan Y P, Zhang Z W, Jin Z P, Yi K Y, Zhang C, Zheng Y J, Wang Y, Yang J, Xu X F, Chen J, Lu Y H, Wei D P, Wee A T S, Wei D C 2019 Nat. Commun. 10 1188Google Scholar

    [251]

    Little W A 1959 Can. J. Phys. 37 15Google Scholar

    [252]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [253]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

    [254]

    Foss C J, Aksamija Z 2019 2 D Mater. 6 025019Google Scholar

    [255]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno Nardelli M 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [256]

    Hopkins P E, Baraket M, Barnat E V, Beechem T E, Kearney S P, Duda J C, Robinson J T, Walton S G 2012 Nano Lett. 12 590Google Scholar

    [257]

    Koh Y K, Lyons A S, Bae M H, Huang B, Dorgan V E, Cahill D G, Pop E 2016 Nano Lett. 16 6014Google Scholar

    [258]

    Zhang C W, Chen W Y, Tao Y, Zhao W W, Cai S, Liu C H, Ni Z H, Xu D Y, Wei Z Y, Yang J K, Bi K D, Chen Y F 2017 Carbon 115 665Google Scholar

    [259]

    Zhang Y, Yan Y P, Guo J, Lu T Y, Liu J, Zhou J, Xu X F 2020 ES Energy Environ. 8 42Google Scholar

    [260]

    Lu T Y, Zhou J, Nakayama T, Yang R G, Li B W 2016 Phys. Rev. B 93 085433Google Scholar

    [261]

    Wei Y H, Zhang R Y, Zhang Y, Zheng X M, Cai W W, Ge Q, Novoselov K S, Xu Z J, Jiang T, Deng C Y, Zhang X A, Qin S Q 2020 ACS Appl. Mater. Interfaces 12 17706Google Scholar

    [262]

    Yan Z, Liu G X, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [263]

    Gao Z L, Zhang Y, Fu Y F, Yuen M M F, Liu J 2013 Carbon 61 342Google Scholar

    [264]

    Bae S H, Shabani R, Lee J B, Baeck S J, Cho H J, Ahn J H 2014 IEEE Trans. Electron Devices 61 4171

    [265]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Yang C W, Park M H, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [266]

    Wu T R, Zhang X F, Yuan Q H, Xue J C, Lu G Y, Liu Z H, Wang H S, Wang H M, Ding F, Yu Q K, Xie X M, Jiang M H 2016 Nat. Mater. 15 43Google Scholar

    [267]

    Shen B, Zhai W T, Zheng W G 2014 Adv. Funct. Mater. 24 4542Google Scholar

    [268]

    Xin G Q, Sun H T, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J 2014 Adv. Mater. 26 4521Google Scholar

    [269]

    Renteria J D, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov A I, Nika D L, Balandin A A 2015 Adv. Funct. Mater. 25 4664Google Scholar

    [270]

    Shahil K M, Balandin A A 2012 Nano Lett. 12 861Google Scholar

    [271]

    Zhang Y F, Han D, Zhao Y H, Bai S L 2016 Carbon 109 552Google Scholar

    [272]

    Loeblein M, Tsang S H, Pawlik M, Phua E J, Yong H, Zhang X W, Gan C L, Teo E H 2017 ACS Nano 11 2033Google Scholar

    [273]

    Li Z, Xu Z, Liu Y J, Wang R, Gao C 2016 Nat. Commun. 7 13684Google Scholar

    [274]

    Ghozatloo A, Rashidi A, Shariaty-Niassar M 2014 Exp. Therm. Fluid Sci. 53 136Google Scholar

    [275]

    Xu X F, Chen J, Zhou J, Li B W 2018 Adv. Mater. 30 1705544Google Scholar

    [276]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

  • [1] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] Zhao Jian-Ning, Wei Dong, Lü Guo-Zheng, Wang Zi-Cheng, Liu Dong-Huan. Transient thermal rectification effect of one-dimensional heterostructure. Acta Physica Sinica, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [3] Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang. Thermal conductivity of materials based on interfacial atomic mixing. Acta Physica Sinica, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [4] Cao Bing-Yang, Zhang Zi-Tong. Thermal smart materials and their applications in space thermal control system. Acta Physica Sinica, 2022, 71(1): 014401. doi: 10.7498/aps.71.20211889
    [5] An Meng, Sun Xu-Hui, Chen Dong-Sheng, Yang Nuo. Research progress of thermal transport in graphene-based thermal interfacial composite materials. Acta Physica Sinica, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [6] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [7] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [9] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [10] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [11] Zhang Long-Yan, Xu Jin-Liang, Lei Jun-Peng. Size effect on boundary condition at solid-liquid interface in microchannel. Acta Physica Sinica, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [12] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [13] Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin. Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [14] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [15] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [16] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [17] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [18] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [19] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [20] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
Metrics
  • Abstract views:  28148
  • PDF Downloads:  1400
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2020
  • Accepted Date:  10 June 2020
  • Available Online:  16 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回