Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene

Han Dan Liu Zhi-Hua Liu Lu-Lu Han Xiao-Mei Liu Dong-Ming Zhuo Kai Sang Sheng-Bo

Citation:

Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene

Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo
PDF
HTML
Get Citation
  • Since the discovery of graphene materials, two-dimensional materials have been widely recognized and gradually applied. Two-dimensional transition metal carbides (MXenes) have better mechanical, magnetic and electrical properties than traditional two-dimensional materials. In this work, Ti3C2Tx samples are prepared by etching Ti3AlC2 with different etching agents for the solutions of HF and LiF/HCl. The effects of etching agents on the structure and gas sensing properties of Ti3C2Tx materials are studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and gas sensing properties analysis. The material structure analysis shows that both HF and LiF/HCl etching agents have good etching effect on Ti3C2Tx material. The results of gas sensing properties show that the gas sensing properties of Ti3C2Tx prepared by LiF/HCl etching agent is better than by HF etching agent, and the wide range, high sensitivity and high stability of NH3 detection can be achieved at room temperature. The analysis shows that the high sensing performance of Ti3C2Tx prepared by LiF/HCl solution etching is mainly due to the high proportion of —O and —OH functional groups on the surface of Ti3C2Tx. The experimental studies can lay a theoretical foundation for studying the gas sensing and practical application of Ti3C2Tx based sensor.
      Corresponding author: Zhuo Kai, zhuokai@tyut.edu.cn ; Sang Sheng-Bo, sunboa-sang@tyut.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031022) and the National NaturalScience Foundationof China (Grant Nos. 51975400, 61971301).
    [1]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [2]

    Deysher G, Shuck C E, Hantanasirisakul K, Frey N C, Foucher A C, Maleski K, Sarycheva A, Shenoy V B, Stach E A, Anasori B, Gogotsi Y 2020 ACS Nano 14 204Google Scholar

    [3]

    Sokol M, Natu V, Kota S, Barsoum M W 2019 Trends Environ. Anal. Chem. 1 210Google Scholar

    [4]

    Tao Q, Lu J, Dahlqvist M, Mockute A, Calder S, Petruhins A, Meshkian R, Rivin O, Potashnikov D, Caspi E a N, Shaked H, Hoser A, Opagiste C, Galera R M, Salikhov R, Wiedwald U, Ritter C, Wildes A R, Johansson B, Hultman L, Farle M, Barsoum M W, Rosen J 2019 Chem. of Mater. 31 2476Google Scholar

    [5]

    Shein I R, Ivanovskii A L 2013 Micro Nano Lett. 8 59Google Scholar

    [6]

    Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y 2018 Nat. Commun. 9 155Google Scholar

    [7]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [8]

    Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H 2017 Angew. Chem. Int. Ed. Engl. 56 1825Google Scholar

    [9]

    Khazaei M, Ranjbar A, Ghorbani Asl M, Arai M, Sasaki T, Liang Y, Yunoki S 2016 Phys. Rev. B 93 205125Google Scholar

    [10]

    Yang Z, Jiang L, Wang J, Liu F, He J, Liu A, Lv S, You R, Yan X, Sun P, Wang C, Duan Y, Lu G 2021 Sens. Actuators B Chem. 326 128828Google Scholar

    [11]

    Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y 2019 Sens. Actuators B Chem. 298 126874Google Scholar

    [12]

    Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A 2019 ACS Sens. 4 2763Google Scholar

    [13]

    Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L 2017 Mater. Des. 114 161Google Scholar

    [14]

    Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Naslund L A, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W 2014 Chem. Mater. 26 2374Google Scholar

    [15]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. Engl. 57 15491Google Scholar

    [16]

    黄大朋 2020 博士学位论文 (济南: 山东大学)

    Huang D P 2020 Ph. D. Dissertation(Jinan: Shandong University) (in Chinese)

    [17]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Inter. 9 37184Google Scholar

    [18]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [19]

    Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar

    [20]

    Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W 2016 Appl. Surf. Sci. 362 406Google Scholar

    [21]

    Wu Y, Nie P, Wang J, Dou H, Zhang X 2017 ACS Appl. Mater. Interfaces 9 39610Google Scholar

    [22]

    Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T 2018 ACS Nano 12 986Google Scholar

    [23]

    Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum M W 2016 Chem. Mater. 28 3507Google Scholar

    [24]

    Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon 91 178Google Scholar

    [25]

    Geistlinger H 1993 Sens. Actuators B Chem. 17 47Google Scholar

    [26]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 445502Google Scholar

    [27]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B 2015 ACS Appl. Mater. Inter. 7 13707Google Scholar

    [28]

    Tang Q, Zhou Z, Shen P 2012 J. Am. Chem. Soc. 134 16909Google Scholar

    [29]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nature Reviews Materials 2 16098

    [30]

    Xiao B, Li Y C, Yu X F, Cheng J B 2016 Sens. Actuators B Chem. 235 103Google Scholar

    [31]

    Ghosh R, Singh A, Santra S, Ray S K, Chandra A, Guha P K 2014 Sens. Actuators B Chem. 205 67Google Scholar

  • 图 1  MAX相及其对应的MXene结构

    Figure 1.  MAX phase and its corresponding MXene structure.

    图 2  (a)和(b) HF溶液刻蚀制备Ti3C2Tx材料SEM图像; (c)和(d) LiF/HCl溶液刻蚀制备Ti3C2Tx材料SEM图像

    Figure 2.  (a) and (b) SEM images of Ti3C2Tx prepared by HF solution etching; (c) and (d) SEM image of Ti3C2Tx prepared by LiF/HCl solution etching.

    图 3  HF溶液刻蚀制备Ti3C2Tx材料的 (a) XPS光谱图; (b) Ti 2p光谱; (c) C 1s光谱和(d) O 1s光谱; LiF/HCl溶液刻蚀制备Ti3C2Tx材料的(e) XPS光谱图; (f) Ti 2p光谱; (g) C 1s光谱和(h) O 1s光谱

    Figure 3.  (a) XPS spectra of Ti3C2Tx prepared by HF solution etching; (b) Ti 2p spectrum; (c) C 1s spectrum and (d) O 1s spectrum; (e) XPS spectra of Ti3C2Tx prepared by LiF/HCl solution etching; (f) Ti 2p spectrum; (g) C 1s spectrum; (h) O 1s spectrum.

    图 4  室温下, (a) HF溶液, (b) LiF/HCl溶液刻蚀制备Ti3C2Tx基气体传感器对不同浓度NH3的响应度; (c) HF溶液, (d) LiF/HCl溶液刻蚀制备的Ti3C2Tx基气体传感器的响应度随NH3浓度变化的朗缪尔等温线

    Figure 4.  Response of Ti3C2Tx based gas sensor prepared by etching: (a) HF solution and (b) LiF/HCl solution to NH3 with different concentrations at room temperature; Langmuir isotherm of the responsivity of Ti3C2Tx based gas sensor prepared by the etching of (c) HF solution and (d) LiF/HCl solution.

    图 5  室温下, (a) HF溶液刻蚀制备和(b) LiF/HCl溶液刻蚀制备的Ti3C2Tx基气体传感器对10 ppm NH3的重复性; (c)室温下, 两种刻蚀剂刻蚀制备的Ti3C2Tx基气体传感器对10 ppm NH3 的稳定性; (d)室温下, 两种刻蚀剂刻蚀制备的Ti3C2Tx基气体传感器对不同气体的响应度

    Figure 5.  At room temperature, (a) Ti3C2Tx based gas sensor prepared by etching HF solution and (b) Ti3C2Tx based gas sensor prepared by etching LiF/HCl solution was repeatable to 10 ppm NH3. (c) at room temperature, the stability of Ti3C2Tx based gas sensor prepared by two etching agents for 10 ppm NH3; (d) response of Ti3C2Tx based gas sensor etched by two etching agents to different gases at room temperature.

    图 6  气体分子吸附在不同端接官能团Ti3C2Tx上的密度泛函理论模拟结果 (a) Ti3C2(OH)2, (b) Ti3C2O2和(c) Ti3C2F2上NH3最小能量配置的侧面和顶部视图(1 Å = 0.1 nm)

    Figure 6.  DFT simulation results of gas molecules adsorbed on different terminated functional groups Ti3C2Tx. Side and top views of the minimum energy configuration for NH3 on (a) Ti3C2(OH)2, (b) Ti3C2O2 and (c) Ti3C2F2 (1 Å = 0.1 nm).

    图 7  Ti3C2Tx基气体传感器对NH3的传感机理

    Figure 7.  Sensing mechanism of NH3 by Ti3C2Tx based gas sensor.

    表 1  两种不同刻蚀剂制备获得的Ti3C2Tx材料比表面积

    Table 1.  Specific surface area of Ti3C2Tx prepared by two different etchers.

    样品刻蚀剂比表面积/(m2·g–1)
    Ti3C2TxHF溶液5.265
    Ti3C2TxLiF/HCl溶液5.263
    DownLoad: CSV

    表 2  图4(c)图4(d)朗缪尔等温线系数

    Table 2.  Figs. 4(c) and 4(d) Langmuir isotherm coefficients.

    刻蚀剂LiF/HClHF
    工作温度室温室温
    a38.9440514.41327
    b0.062460.3099
    DownLoad: CSV
  • [1]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [2]

    Deysher G, Shuck C E, Hantanasirisakul K, Frey N C, Foucher A C, Maleski K, Sarycheva A, Shenoy V B, Stach E A, Anasori B, Gogotsi Y 2020 ACS Nano 14 204Google Scholar

    [3]

    Sokol M, Natu V, Kota S, Barsoum M W 2019 Trends Environ. Anal. Chem. 1 210Google Scholar

    [4]

    Tao Q, Lu J, Dahlqvist M, Mockute A, Calder S, Petruhins A, Meshkian R, Rivin O, Potashnikov D, Caspi E a N, Shaked H, Hoser A, Opagiste C, Galera R M, Salikhov R, Wiedwald U, Ritter C, Wildes A R, Johansson B, Hultman L, Farle M, Barsoum M W, Rosen J 2019 Chem. of Mater. 31 2476Google Scholar

    [5]

    Shein I R, Ivanovskii A L 2013 Micro Nano Lett. 8 59Google Scholar

    [6]

    Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y 2018 Nat. Commun. 9 155Google Scholar

    [7]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [8]

    Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H 2017 Angew. Chem. Int. Ed. Engl. 56 1825Google Scholar

    [9]

    Khazaei M, Ranjbar A, Ghorbani Asl M, Arai M, Sasaki T, Liang Y, Yunoki S 2016 Phys. Rev. B 93 205125Google Scholar

    [10]

    Yang Z, Jiang L, Wang J, Liu F, He J, Liu A, Lv S, You R, Yan X, Sun P, Wang C, Duan Y, Lu G 2021 Sens. Actuators B Chem. 326 128828Google Scholar

    [11]

    Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y 2019 Sens. Actuators B Chem. 298 126874Google Scholar

    [12]

    Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A 2019 ACS Sens. 4 2763Google Scholar

    [13]

    Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L 2017 Mater. Des. 114 161Google Scholar

    [14]

    Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Naslund L A, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W 2014 Chem. Mater. 26 2374Google Scholar

    [15]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. Engl. 57 15491Google Scholar

    [16]

    黄大朋 2020 博士学位论文 (济南: 山东大学)

    Huang D P 2020 Ph. D. Dissertation(Jinan: Shandong University) (in Chinese)

    [17]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Inter. 9 37184Google Scholar

    [18]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [19]

    Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar

    [20]

    Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W 2016 Appl. Surf. Sci. 362 406Google Scholar

    [21]

    Wu Y, Nie P, Wang J, Dou H, Zhang X 2017 ACS Appl. Mater. Interfaces 9 39610Google Scholar

    [22]

    Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T 2018 ACS Nano 12 986Google Scholar

    [23]

    Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum M W 2016 Chem. Mater. 28 3507Google Scholar

    [24]

    Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon 91 178Google Scholar

    [25]

    Geistlinger H 1993 Sens. Actuators B Chem. 17 47Google Scholar

    [26]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 445502Google Scholar

    [27]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B 2015 ACS Appl. Mater. Inter. 7 13707Google Scholar

    [28]

    Tang Q, Zhou Z, Shen P 2012 J. Am. Chem. Soc. 134 16909Google Scholar

    [29]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nature Reviews Materials 2 16098

    [30]

    Xiao B, Li Y C, Yu X F, Cheng J B 2016 Sens. Actuators B Chem. 235 103Google Scholar

    [31]

    Ghosh R, Singh A, Santra S, Ray S K, Chandra A, Guha P K 2014 Sens. Actuators B Chem. 205 67Google Scholar

  • [1] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [2] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [3] Bi Wen-Jie, Yang Shuang, Zhou Jing, Jin Wei, Chen Wen. Research on synthesis of Cu3Mo2O9/MoO3 nanocomposite and trimethylamine gas sensing properties. Acta Physica Sinica, 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [4] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [5] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [6] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [7] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [8] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [9] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [10] Chen Xu-Fan, Yang Qiang, Hu Xiao-Hui. Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer. Acta Physica Sinica, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [11] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [12] Luo Shi, Wei Da-Peng, Wei Da-Cheng. Applications of two-dimensional materials in bio-sensors. Acta Physica Sinica, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [13] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [14] Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei. First principle study on gas sensor mechanism of black-AsP monolayer. Acta Physica Sinica, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [15] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [16] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [17] Wei Zhong-Ming, Xia Jian-Bai. Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. Acta Physica Sinica, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [18] Wang Cong, Liu Jie, Zhang Han. Ultrafast pulse lasers based on two-dimensinal nanomaterials. Acta Physica Sinica, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [19] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [20] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
Metrics
  • Abstract views:  11982
  • PDF Downloads:  323
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2021
  • Accepted Date:  05 September 2021
  • Available Online:  18 October 2021
  • Published Online:  05 January 2022

/

返回文章
返回