Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass

Duan Ya-Juan Qiao Ji-Chao

Citation:

Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass

Duan Ya-Juan, Qiao Ji-Chao
PDF
HTML
Get Citation
  • As a potential functional and structural material, high-entropy metallic glasses have aroused tremendous research interest in condense matter physics and mechanics. The correlation between macroscopic mechanic properties and microstructure heterogeneity of high-entropy metallic glasses is one of the most important scientific issues in glassy solids. In the present research, Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass are selected as the model alloys. Dynamic mechanical analysis (DMA) and stress relaxation are used to investigate the influences of temperature and physical aging on dynamic mechanical relaxation process and microstructure heterogeneity of the model alloys. The dynamic mechanical analysis results demonstrate that the Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass both exhibit evident β relaxation process. In addition, the atomic mobility of model alloys is reduced in these processes, and the β relaxation shifts toward higher temperatures. In the stress relaxation process, the Gibbs free energy is reduced due to the high configurational entropy. This is the potential reason that high-entropy metallic glass possesses higher activation energy. In parallel, high-entropy metallic glass is more difficult to activate and needs to break through a higher energy barrier. With the increase of physical aging time, the flow unit in high-entropy metallic glass becomes smaller. This also benefits from the high-entropy effects that bring sluggish diffusion into high-entropy metallic glass. The change of activation volume under physical aging of high-entropy metallic glass is less sensitive to stress relaxation than that of metallic glass.
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province, China (Grant No. 2021JC-12), and the Innovation Foundation for Doctoral Dissertation of Northwestern Polytechnical University, China (Grant No. CX202031).
    [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [3]

    Greer A L 1995 Science 267 1947Google Scholar

    [4]

    Li D M, Chen L S, Yu P, Ding D, Xia L 2020 Chin. Phys. Lett. 37 086401Google Scholar

    [5]

    Dong J, Feng Y, Huan Y, Yi J, Wang W, Bai H, Sun B A 2020 Chin. Phys. Lett. 37 017103Google Scholar

    [6]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19 1175Google Scholar

    [7]

    Miracle D B 2019 Nat. Commun. 10 1805Google Scholar

    [8]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [9]

    Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E 2019 Nat. Commun. 10 1Google Scholar

    [10]

    Zhang L T, Duan Y J, Daniel C, Eloi P, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. Chin. Phys. Mech. 64 296111Google Scholar

    [11]

    Zhang L T, Duan Y J, Wada T, Kato H, Pelletier J M, Crespo D, Pineda E, Qiao J C 2021 J. Mater. Sci. Technol. 83 248Google Scholar

    [12]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [13]

    Lyu G J, Qiao J C, Yao Y, Wang Y J, Morthomas J, Fusco C, Rodney D 2021 Acta Mater. 220 117293Google Scholar

    [14]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [15]

    Amini N, Yang F, Pineda E, Ruta B, Sprung M, Meyer A 2021 Phys. Rev. Mater. 5 055601Google Scholar

    [16]

    Soriano D, Zhou H, Hilke S, Pineda E, Ruta B, Wilde G 2021 J. Phys. Condens. Matter 33 164004Google Scholar

    [17]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [18]

    张浪渟, 乔吉超. 2021 中国科学: 物理学 力学 天文学 51 086111

    Zhang L T, Qiao J C 2021 Sci. China. Phys. Mech. 51 086111

    [19]

    Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar

    [20]

    Ketkaew J, Chen W, Wang H, Datye A, Fan M, Pereira G, Schwarz U D, Liu Z, Yamada R, Dmowski W, Shattuck M D, O’Hern C S, Egami T, Bouchbinder E, Schroers J 2018 Nat. Commun. 9 3271Google Scholar

    [21]

    Duan Y J, Yang D S, Qiao J C, Crespo D, Pelletier J M, Li L, Gao K, Zhang T 2020 Intermetallics 124 106846Google Scholar

    [22]

    Cao Q, Huang D, Yang J, Wang F 2020 Chin. Phys. Lett. 37 076201Google Scholar

    [23]

    Zhang S, Wang W, Guan P 2021 Chin. Phys. Lett. 38 016802Google Scholar

    [24]

    Cangialosi D, Boucher V M, Alegría A, Colmenero J 2013 Soft Matter 9 8619Google Scholar

    [25]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [26]

    Ramamurty U, Lee M L, Basu J, Li Y 2002 Scr. Mater. 47 107Google Scholar

    [27]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [28]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [29]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [30]

    Yang M, Liu X J, Wu Y, Wang H, Jiang S H, Wang X Z, Lu Z P 2020 Sci. Chin. Phys. Mech. 50 067003

    [31]

    Wang W H 2014 JOM 66 2067Google Scholar

    [32]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [33]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [34]

    Li Y, Wang S, Wang X, Yin M, Zhang W 2020 J. Mater. Sci. Technol. 43 32Google Scholar

    [35]

    Jalali A, Malekan M, Park E S, Rashidi R, Bahmani A, Yoo G H 2022 J. Alloys Compd. 892 162220Google Scholar

    [36]

    Yang M, Liu X, Ruan H, Wu Y, Wang H, Lu Z 2016 J. Appl. Phys. 119 245112Google Scholar

    [37]

    Zhang L, Duan Y, Crespo D, Pineda E, Wada T, Kato H, Pelletier J M, Qiao J 2021 Appl. Phys. Lett. 119 051905Google Scholar

    [38]

    Duan Y J, Qiao J C, Wada T, Kato H, Wang Y J, Pineda E, Crespo D 2021 Scr. Mater. 194 113675Google Scholar

    [39]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [40]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [41]

    Lu Z, Shang B S, Sun Y T, Zhu Z G, Guan P F, Wang W H, Bai H Y 2016 J. Chem. Phys. 144 144501Google Scholar

    [42]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011Google Scholar

    [43]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [44]

    Khonik V A 2017 Chin. Phys. B 26 16401Google Scholar

    [45]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [46]

    Wang Z, Sun B, Bai H, Wang W 2014 Nat. Commun. 5 5823Google Scholar

    [47]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [48]

    Zhao L Z, Li Y Z, Xue R J, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 154904Google Scholar

    [49]

    Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar

    [50]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [51]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [52]

    Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys Compd. 836 155506Google Scholar

    [53]

    Lu Z, Wang W H, Bai H Y 2015 Sci. Chin. Mater. 58 98Google Scholar

    [54]

    Lau T T, Kushima A, Yip S 2010 Phys. Rev. Lett. 104 175501Google Scholar

    [55]

    Jiao W, Wen P, Peng H, Bai H, Sun B, Wang W 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [56]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [57]

    Busch R, Schroers J, Wang W 2007 MRS Bull. 32 620Google Scholar

    [58]

    Douglas J F, Dudowicz J, Freed K F 2006 J. Chem. Phys. 125 144907Google Scholar

    [59]

    Jing J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 1Google Scholar

    [60]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [61]

    Caillard D, Martin J L 2003 Thermally Activated Mechanisms in Crystal Plasticity (Elsevier)

    [62]

    Liang D, Wang X, Ge K, Cao Q, Jiang J 2014 J. Non·Cryst. Solids 383 97

    [63]

    Tong Y, Qiao J C, Zhang C, Pelletier J M, Yao Y 2016 J. Non·Cryst. Solids 452 57

    [64]

    Gibbs M, Evetts J, Leake J 1983 J. Mater. Sci. 18 278Google Scholar

  • 图 1  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金DSC曲线(升温速率为20 K/min). 玻璃转变温度$ {T_{\text{g}}} $和晶化温度$ {T_{\text{x}}} $如图中箭头所示

    Figure 1.  DSC curves of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass with a heating rate of 20 K/min. The glass transition temperature $ {T_{\text{g}}} $ and the onset crystallization temperature $ {T_{\text{x}}} $ are shown by the arrows.

    图 2  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金铸态[38]时效后归一化损耗模量${E''}/E_{\max }''$随归一化温度$ T/{T_\alpha } $的演化($E_{\max }''$为两种模型合金损耗模量最大值, $ {T_\alpha } $为两种模型合金α弛豫的峰值温度), 升温速率为 3 K/min, 加载频率为3 Hz. 物理时效温度为0.824$ {T_{\text{g}}} $

    Figure 2.  Evolution of the normalized loss modulus ${E''}/E_{\max }''$of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass [38] as a function of normalized temperature $ T/{T_\alpha } $ with the state of as-cast and pre-aging (aging temperature is 0.824$ {T_{\text{g}}} $). The driving frequency is 3 Hz, the heating rate is 3 K/min and $ {T_\alpha } $ is the peak temperature of α relaxation.

    图 3  (a) Pd42.5Cu30Ni7.5P20非晶合金和(b) Pd20Pt20Cu20Ni20P20高熵非晶合金在不同温度下(0.8$ {T_{\text{g}}} $—0.9$ {T_{\text{g}}} $)的应力松弛行为, 应力通过初始应力进行归一化, 实线是KWW方程拟合曲线

    Figure 3.  Stress relaxation spectra of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass at different temperatures. KWW fittings are shown with solid lines.

    图 4  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金拟合参数 (a) $ {\beta _{{\text{KWW}}}} $, (b) $ n $随温度的演化

    Figure 4.  Fitting parameters (a) $ {\beta _{{\text{KWW}}}} $, (b) $ n $ of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass as a function of temperature.

    图 5  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金应力松弛弛豫时间$ {\tau _{\text{c}}} $随温度的演化. 直线为基于Arrhenius公式拟合

    Figure 5.  Dependence of the characteristic stress relaxation time $ {\tau _{\text{c}}} $ on the reciprocal stress relaxation temperature Tg/T of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass. The solid lines are the fittings with Arrhenius equation.

    图 6  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金在0.824$ {T_{\text{g}}} $时效1800, 3600, 7200, 10800 s后的应力松弛谱及拟合曲线

    Figure 6.  Stress relaxation and the corresponding fitting curves for (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass after different aging time (1800, 3600, 7200, 10800 s) at 0.824$ {T_{\text{g}}} $.

    图 7  Pd42.5Cu30Ni7.5P20非晶合金和 Pd20Pt20Cu20Ni20P20高熵非晶合金拟合参数 (a) $ n $, (b) $ {V_{\text{a}}} $, (c) $ {C_{\text{r}}} $随物理时效时间的演化

    Figure 7.  The fitting parameters (a) $ n $, (b) $ {V_{\text{a}}} $, (c) $ {C_{\text{r}}} $of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass as a function of aging time.

    图 8  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金激活能谱随时效时间的演化

    Figure 8.  Evolution of activation energy spectrum of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass with different aging time.

  • [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [3]

    Greer A L 1995 Science 267 1947Google Scholar

    [4]

    Li D M, Chen L S, Yu P, Ding D, Xia L 2020 Chin. Phys. Lett. 37 086401Google Scholar

    [5]

    Dong J, Feng Y, Huan Y, Yi J, Wang W, Bai H, Sun B A 2020 Chin. Phys. Lett. 37 017103Google Scholar

    [6]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19 1175Google Scholar

    [7]

    Miracle D B 2019 Nat. Commun. 10 1805Google Scholar

    [8]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [9]

    Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E 2019 Nat. Commun. 10 1Google Scholar

    [10]

    Zhang L T, Duan Y J, Daniel C, Eloi P, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. Chin. Phys. Mech. 64 296111Google Scholar

    [11]

    Zhang L T, Duan Y J, Wada T, Kato H, Pelletier J M, Crespo D, Pineda E, Qiao J C 2021 J. Mater. Sci. Technol. 83 248Google Scholar

    [12]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [13]

    Lyu G J, Qiao J C, Yao Y, Wang Y J, Morthomas J, Fusco C, Rodney D 2021 Acta Mater. 220 117293Google Scholar

    [14]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [15]

    Amini N, Yang F, Pineda E, Ruta B, Sprung M, Meyer A 2021 Phys. Rev. Mater. 5 055601Google Scholar

    [16]

    Soriano D, Zhou H, Hilke S, Pineda E, Ruta B, Wilde G 2021 J. Phys. Condens. Matter 33 164004Google Scholar

    [17]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [18]

    张浪渟, 乔吉超. 2021 中国科学: 物理学 力学 天文学 51 086111

    Zhang L T, Qiao J C 2021 Sci. China. Phys. Mech. 51 086111

    [19]

    Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar

    [20]

    Ketkaew J, Chen W, Wang H, Datye A, Fan M, Pereira G, Schwarz U D, Liu Z, Yamada R, Dmowski W, Shattuck M D, O’Hern C S, Egami T, Bouchbinder E, Schroers J 2018 Nat. Commun. 9 3271Google Scholar

    [21]

    Duan Y J, Yang D S, Qiao J C, Crespo D, Pelletier J M, Li L, Gao K, Zhang T 2020 Intermetallics 124 106846Google Scholar

    [22]

    Cao Q, Huang D, Yang J, Wang F 2020 Chin. Phys. Lett. 37 076201Google Scholar

    [23]

    Zhang S, Wang W, Guan P 2021 Chin. Phys. Lett. 38 016802Google Scholar

    [24]

    Cangialosi D, Boucher V M, Alegría A, Colmenero J 2013 Soft Matter 9 8619Google Scholar

    [25]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [26]

    Ramamurty U, Lee M L, Basu J, Li Y 2002 Scr. Mater. 47 107Google Scholar

    [27]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [28]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [29]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [30]

    Yang M, Liu X J, Wu Y, Wang H, Jiang S H, Wang X Z, Lu Z P 2020 Sci. Chin. Phys. Mech. 50 067003

    [31]

    Wang W H 2014 JOM 66 2067Google Scholar

    [32]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [33]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [34]

    Li Y, Wang S, Wang X, Yin M, Zhang W 2020 J. Mater. Sci. Technol. 43 32Google Scholar

    [35]

    Jalali A, Malekan M, Park E S, Rashidi R, Bahmani A, Yoo G H 2022 J. Alloys Compd. 892 162220Google Scholar

    [36]

    Yang M, Liu X, Ruan H, Wu Y, Wang H, Lu Z 2016 J. Appl. Phys. 119 245112Google Scholar

    [37]

    Zhang L, Duan Y, Crespo D, Pineda E, Wada T, Kato H, Pelletier J M, Qiao J 2021 Appl. Phys. Lett. 119 051905Google Scholar

    [38]

    Duan Y J, Qiao J C, Wada T, Kato H, Wang Y J, Pineda E, Crespo D 2021 Scr. Mater. 194 113675Google Scholar

    [39]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [40]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [41]

    Lu Z, Shang B S, Sun Y T, Zhu Z G, Guan P F, Wang W H, Bai H Y 2016 J. Chem. Phys. 144 144501Google Scholar

    [42]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011Google Scholar

    [43]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [44]

    Khonik V A 2017 Chin. Phys. B 26 16401Google Scholar

    [45]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [46]

    Wang Z, Sun B, Bai H, Wang W 2014 Nat. Commun. 5 5823Google Scholar

    [47]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [48]

    Zhao L Z, Li Y Z, Xue R J, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 154904Google Scholar

    [49]

    Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar

    [50]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [51]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [52]

    Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys Compd. 836 155506Google Scholar

    [53]

    Lu Z, Wang W H, Bai H Y 2015 Sci. Chin. Mater. 58 98Google Scholar

    [54]

    Lau T T, Kushima A, Yip S 2010 Phys. Rev. Lett. 104 175501Google Scholar

    [55]

    Jiao W, Wen P, Peng H, Bai H, Sun B, Wang W 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [56]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [57]

    Busch R, Schroers J, Wang W 2007 MRS Bull. 32 620Google Scholar

    [58]

    Douglas J F, Dudowicz J, Freed K F 2006 J. Chem. Phys. 125 144907Google Scholar

    [59]

    Jing J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 1Google Scholar

    [60]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [61]

    Caillard D, Martin J L 2003 Thermally Activated Mechanisms in Crystal Plasticity (Elsevier)

    [62]

    Liang D, Wang X, Ge K, Cao Q, Jiang J 2014 J. Non·Cryst. Solids 383 97

    [63]

    Tong Y, Qiao J C, Zhang C, Pelletier J M, Yao Y 2016 J. Non·Cryst. Solids 452 57

    [64]

    Gibbs M, Evetts J, Leake J 1983 J. Mater. Sci. 18 278Google Scholar

  • [1] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] Zhang Jing-Qi, Hao Qi, Lyu Guo-Jian, Xiong Bi-Jin, Qiao Ji-Chao. Understanding stress relaxation behavior of amorphous polystyrene based on microstructural heterogeneity. Acta Physica Sinica, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [3] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [4] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [5] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [6] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [7] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [8] An Min-Rong, Li Si-Lan, Su Meng-Jia, Deng Qiong, Song Hai-Yang. Molecular dynamics simulation of size dependent plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [9] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [10] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [11] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [12] Wang Hao-Yu, Nong Zhi-Sheng, Wang Ji-Jie, Zhu Jing-Chuan. Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys. Acta Physica Sinica, 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [13] Li Rui-Xuan, Zhang Yong. Entropy and glass formation. Acta Physica Sinica, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [14] Li Jiang-Cheng, Mei Dong-Cheng. The time-delay effect of a metapopulation. Acta Physica Sinica, 2008, 57(11): 6792-6798. doi: 10.7498/aps.57.6792
    [15] Zhang Jian-Hua, Zhang Qing-Song. Contribution of high spin field to the entropy of Vaidya-Bonner black hole. Acta Physica Sinica, 2005, 54(11): 5500-5503. doi: 10.7498/aps.54.5500
    [16] Su Jiu-Qing, Li Chuan-An. The contribution of the high spinning gravitation field to the static black hole entropy with spherical-symmetry. Acta Physica Sinica, 2005, 54(2): 530-533. doi: 10.7498/aps.54.530
    [17] Zhao He-Yun, Kan Jia-De, Liu Qing-Ju, Liu Zuo-Quan. Novel physical effects in amorphous alloy crystallization induced by shock wave. Acta Physica Sinica, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [18] WANG ZHI, HE KAI-VUAN. ISOTHERMAL AGING OF PERMEABILITY OF AMORPHOUS Fe-Ni-Si-B ALLOYS. Acta Physica Sinica, 1992, 41(10): 1694-1699. doi: 10.7498/aps.41.1694
    [19] ZHOU MIN-YAO. NON-THEPMAL DISTRIBUTION AND TOTAL ENTROPY INCREASE OF SCALAR PARTICLE GAS IN THE MULTI-DIMENSIONAL UNIVERSE. Acta Physica Sinica, 1987, 36(9): 1224-1229. doi: 10.7498/aps.36.1224
    [20] XIA RI-YUAN. IMPURITY OUT-DIFFUSION MODEL IN RECRYSTALLIZATION OF AMORPHOUS LAYER DUE TO HIGH DOSE ION IMPLANTATION. Acta Physica Sinica, 1980, 29(5): 566-576. doi: 10.7498/aps.29.566
Metrics
  • Abstract views:  5785
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2021
  • Accepted Date:  29 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回