Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact

Li Bo Li Ling Zhu Jing-Jun Lin Wei-Ping An Zhu

Citation:

Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact

Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu
PDF
HTML
Get Citation
  • The K-shell ionization cross sections of Al, Ti, Cu and L-shell characteristic X-ray production cross sections of Cu, Ag and Au (Lα, Lβ and Lγ subshells for Au) by electron impact at incident energy of 5–27 keV are determined experimentally. Thin films of the studied elements, deposited on thin carbon substrates, are employed as targets in the experiments. The thickness of the thin carbon substrate is 7 μg/cm2, the targets are Al, Ti, Cu, Ag and Au and their thickness values are 5.5 μg/cm2, 28 μg/cm2, Cu 35.5 μg/cm2, 44 μg/cm2 and 44 μg/cm2, respectively. The target thickness values are checked by using Rutherford Backscattering Spectrometry (RBS). The electron beam is provided by a scanning electron microscope (KYKY-2800B). The characteristic X-rays produced are recorded by a silicon drifted detector (XR-100SDD, Amptek), which has a C2 ultrathin window and can detect the low-energy X-rays down to boron Kα line (0.183 keV). The detector efficiency is calibrated by using the standard sources (55Fe, 57Co, 137Cs and 241Am) for X-ray energy larger than 3.3 keV while using the characteristic peak method (i.e. by measuring characteristic X-ray spectra produced by 20 keV electron impacting various thick solid targets) for X-ray energy less than 3.3 keV. The experimental results are corrected by the Monte Carlo code PENELOPE for the effects of target structure and Faraday cup. Meanwhile, the electron escape rates obtained from the Faraday cup and the signal pile-up effect are also considered. The results show that when the incident electron energy is low, the influences of electron energy loss and target thickness are significant. The thinner the target , the smaller the correction is. Experimental uncertainties for K-shell ionization cross sections of Al, Ti and Cu are about 5.0%, 5.6% and 5.1%, respectively; experimental uncertainties for L-shell X-ray production cross sections for Cu and Ag are about 5.3% and 4.0%, and for Lα,Lβ,and Lγ of Au are about 6.1%, 8.9% and 11.0%, respectively. The experimental L-shell characteristic X-ray production cross sections of Cu are given for the first time. Compared with the theoretical values of the semi-relativistic distorted-wave Born approximation (DWBA), most of the experimental values in this work are in good agreement within 7% deviation. The best agreement between the experimental results and the theoretical values is obtained for the K shell ionization cross section of Al, and the deviation is less than 1.7% for the data where the incident energy is above 10 keV. The least consistency with the theoretical values is the experimental L shell characteristic X-ray production cross sections of Cu, with a deviation being about 5–22%. The comparison of the experimental L shell characteristic X-ray production cross sections of Cu (including Ga and As elements) with those from the DWBA theory indicates that the theoretical calculations of L shell ionization cross sections of medium heavy elements and the corresponding atomic parameters (such as fluorescence yields and Coster-Kronig transition probabilities) need to be more accurately determined. According to the present results, the ionization cross sections or characteristic X-ray production cross sections measured by the thin target thin substrate, the thin target thick substrate and the thick target methods are equivalent to each other within the uncertainties.
      Corresponding author: An Zhu, anzhu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175158).
    [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [3]

    Born M 1926 Z. Physik 38 803Google Scholar

    [4]

    Truhlar D O, Rice J K, Kuppermann A, Trajmar S 1970 Phys. Rev. A 1 778Google Scholar

    [5]

    Shelton W N, Leherissey E S, Madison D H 1971 Phys. Rev. A 3 242Google Scholar

    [6]

    Madison D H, Shelton W N 1973 Phys. Rev. A 7 499Google Scholar

    [7]

    Rainer H 1990 Phys. Lett. A 144 81

    [8]

    Bely O, Schmartz S B 1969 Astron. Astrophys. 1 281

    [9]

    Sampson D H 1986 Phys. Rev. A 34 986Google Scholar

    [10]

    Fontes C J 1993 Phys. Rev. A 47 1009Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [15]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1981 Phys. Rev. A 24 72Google Scholar

    [16]

    Shima K, Okuda M, Suzuki E, Tsubota T, Mikumo T 1983 J. Appl. Phys. 54 1202Google Scholar

    [17]

    Llovet X, Merlet C, Salvat F 2000 J. Phys. B:At. Mol. Opt. Phys. 33 3761Google Scholar

    [18]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304Google Scholar

    [19]

    Moy A, Merlet C, Llovet X, Dugne O 2013 J. Phys. B:At. Mol. Opt. Phys. 46 115202Google Scholar

    [20]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 EPL 118 13001Google Scholar

    [21]

    Liang S, Wu Y, Zhao Z, Xia X G, Ke Z X, Pan M, Wang B Y, Zhang P 2021 Radiat. Phys. Chem. 180 109321Google Scholar

    [22]

    Merlet C, Llovet X, Fernandez-Varea J M 2006 Phys. Rev. A 73 062719Google Scholar

    [23]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708Google Scholar

    [24]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [25]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4001Google Scholar

    [26]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71Google Scholar

    [27]

    Zhao J L, Bai S, An Z, Zhu J J, Tan W J, Liu M T 2020 Radiat. Phys. Chem. 171 108722Google Scholar

    [28]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710Google Scholar

    [29]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [30]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [31]

    李颖涵, 安竹, 朱敬军, 李玲 2020 物理学报 69 133401Google Scholar

    Li Y H, An Z, Zhu J J, Li L 2020 Acta Phys. Sin. 69 133401Google Scholar

    [32]

    Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res. B 506 15Google Scholar

    [33]

    樊启文, 许国基, 杜英辉, 张榕 2008 原子能科学技术 42 925

    Fan Q W, Xu G J, Du Y H, Zhang R 2008 Atom. Energ. Sci. Technol 42 925

    [34]

    Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J 2018 Nucl. Instrum. Methods Phys. Res. B 418 68Google Scholar

    [35]

    Liu B, Ding W, An Z, Zhu J J, Zhang Z, Li L, Lin W P 2021 Fusion Eng. Des. 172 112751Google Scholar

    [36]

    Sabbatucci L, Scot V, Fernandez J E 2014 Radiat. Phys. Chem. 104 372Google Scholar

    [37]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [38]

    Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rathkopf J, Scofield J 1991 Report UCRL-50400 30 Lawrence Livermore National Laboratory, Livermore, CA

    [39]

    Mei C S, Wu Y, Yuan Y, Chang C H, Qian Z C, Zhu J J, Moharram K 2016 J. Phys. B: At. Mol. Opt. Phys. 49 245204

    [40]

    Silvina P L, Vasconcellos M A Z, Ruth H, Jorge C T 2012 Phys. Rev. A 86 042701Google Scholar

    [41]

    He F Q, Peng X F, Long X G, Luo Z M, An Z 1997 Nucl. Instrum. Methods Phys. Res. B 129 445Google Scholar

    [42]

    周长庚, 付玉川, 安竹, 罗正明 2000 强激光与粒子束 12 601

    Zhou C G, Fu Y C, An Z, Luo Z M 2000 High Power Laser and Particle Beams 12 601

    [43]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 Radiat. Phys. Chem. 122 66Google Scholar

    [44]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [45]

    Wu Y, An Z, Liu M T, Duan Y M, Tang C H, Luo Z M 2004 J. Phys. B:At. Mol. Opt. Phys. 37 4527Google Scholar

    [46]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006Google Scholar

    [47]

    Campos C S, Vasconcellos M A Z 2002 Phys. Rev. A 66 012719Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  The schematic of experimental setup.

    图 2  SDD探测器的效率刻度曲线

    Figure 2.  The X-ray detection efficiency of the SDD detector.

    图 3  从上到下分别是能量为25 keV的电子束碰撞Cu, Au, Al, Ti, Ag 5种薄靶产生的X射线谱, 元素×N中的N为对应谱放大倍数, 虚线是轫致辐射本底

    Figure 3.  The experimental spectra for Cu, Au, Al, Ti, Ag target by 25 keV electron impact (from the top to the bottom). N in element ×N is the magnification of the corresponding spectrum. The dotted line is the bremsstrahlung background.

    图 4  能量为5—27 keV的电子碰撞5种薄靶K壳层电离截面或L壳层特征X射线产生截面修正系数

    Figure 4.  The correction factors K for K shell ionization cross sections or L shell characteristic X-ray production cross sections of five thin targets with 5–27 keV electron impact.

    图 5  能量为5—27 keV的电子碰撞Al靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Figure 5.  The K shell ionization cross sections of Al target by 5–27 keV electron impact. The solid shapes are experimental values. The solid line is DWBA theoretical value.

    图 7  能量为12—27 keV的电子碰撞Cu靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Figure 7.  The K shell ionization cross sections of Cu target by 12–27 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 8  能量为5—27 keV的电子碰撞Cu靶L壳层特征X射线产生截面. 实心方点为实验值; 实线为DWBA理论值

    Figure 8.  The L shell characteristic X-ray production cross sections of Cu target by 5–27 keV electron impact. Solid squares are the experimental values. The solid line is DWBA theoretical value.

    图 10  能量为13—25 keV的电子碰撞Au靶L壳层特征X射线产生截面. 从上到下分别是Lα, Lβ和Lγ子壳层. 其中, 实心形状为实验值; 实线为DWBA理论值

    Figure 10.  The Lα, Lβ and Lγ shell characteristic X-ray production cross sections of Au target by 13–25 keV electron impact (from top to bottom). The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 6  能量为7—25 keV的电子碰撞Ti靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Figure 6.  The K shell ionization cross sections of Ti target by 7–25 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 9  能量为7—27 keV的电子碰撞Ag靶L壳层特征X射线产生截面. 实心形状为实验值; 实线为DWBA理论值

    Figure 9.  The L shell characteristic X-ray production cross sections of Ag target by 7–27 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    表 1  靶原子K壳层荧光产额及X射线分支比(提取自PENELOPE程序数据库)

    Table 1.  Fluorescence yields and X-ray branching ratios of K shell of target atoms (extracted from PENELOPE program database).

    ElementsFluorescence yieldsX-ray branching ratios
    ωKFF
    Al0.03710.99390.0061
    Ti0.21350.89790.1021
    Cu0.43380.89160.1084
    DownLoad: CSV

    表 2  靶原子L壳层荧光产额及Coster-Kronig跃迁概率(提取自PENELOPE程序数据库)

    Table 2.  Fluorescence yields and Coster-Kronig transition coefficients of L shell of target atoms (extracted from PENELOPE program database).

    ElementsFluorescence yieldsCoster-Kronig transition coefficients
    ωL1ωL2ωL3f12f13f23
    Cu0.00190.00920.00880.24020.57220.0089
    Ag0.01490.05470.05700.09210.66460.1604
    Au0.08230.36270.31830.07000.70340.1285
    DownLoad: CSV

    表 3  靶原子L壳层X射线分支比(提取自PENELOPE程序数据库)

    Table 3.  X-ray branching ratios of L shell of target atoms (extracted from PENELOPE program database).

    ElementsX-ray branching ratios
    FFFFF1γF2γ
    Cu0.49330.94300.48210.01210.00000.0131
    Ag0.81590.83910.85090.08140.14940.0862
    Au0.78220.74660.79890.17020.22270.1786
    DownLoad: CSV

    表 4  Al, Ti, Cu的K壳层电离截面实验结果

    Table 4.  Experimental results of K shell ionization cross sections of Al, Ti and Cu.

    Incident energies/keVK-shell ionization cross sections and uncertainties/b
    AlTiCu
    511720±580
    712261±616689±41
    812378±621898±53
    1012050±588993±55151±8
    1210952±5461149±64219±12
    1310526±5231191±67264±15
    159982±4881211±67324±17
    179258±4611236±69377±20
    189019±4491240±70399±21
    208495±4151256±70426±22
    227866±3901248±70448±24
    237629±3791243±69453±24
    257283±3551232±68458±24
    276923±363467±25
    DownLoad: CSV

    表 5  Cu, Ag和Au的L壳层特征X射线产生截面实验结果

    Table 5.  Experimental results of L shell characteristic X-ray production cross sections of Cu, Ag and Au.

    Incident energies/keVL-shell X-ray production cross sections and uncertainties/b
    CuAgAu-LαAu-LβAu-Lγ
    5961±49
    7883±45569±23
    8842±43612±25
    10770±39621±24
    12719±37638±26
    13704±36637±2636.9±2.911.3±1.9
    15653±33626±2579.1±4.434.5±2.5
    17601±31616±25112.9±6.864.4±4.6
    18587±30607±25130.5±8.076.0±5.5
    20558±28598±24148.7±8.386.4±5.211.6±1.3
    22520±27579±23161.8±9.5100.5±6.613.6±1.8
    23505±26571±23168.8±10.0100.2±6.513.8±1.8
    25474±24555±21178.1±9.5110.9±6.116.3±1.4
    27452±23534±21
    DownLoad: CSV
  • [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [3]

    Born M 1926 Z. Physik 38 803Google Scholar

    [4]

    Truhlar D O, Rice J K, Kuppermann A, Trajmar S 1970 Phys. Rev. A 1 778Google Scholar

    [5]

    Shelton W N, Leherissey E S, Madison D H 1971 Phys. Rev. A 3 242Google Scholar

    [6]

    Madison D H, Shelton W N 1973 Phys. Rev. A 7 499Google Scholar

    [7]

    Rainer H 1990 Phys. Lett. A 144 81

    [8]

    Bely O, Schmartz S B 1969 Astron. Astrophys. 1 281

    [9]

    Sampson D H 1986 Phys. Rev. A 34 986Google Scholar

    [10]

    Fontes C J 1993 Phys. Rev. A 47 1009Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [15]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1981 Phys. Rev. A 24 72Google Scholar

    [16]

    Shima K, Okuda M, Suzuki E, Tsubota T, Mikumo T 1983 J. Appl. Phys. 54 1202Google Scholar

    [17]

    Llovet X, Merlet C, Salvat F 2000 J. Phys. B:At. Mol. Opt. Phys. 33 3761Google Scholar

    [18]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304Google Scholar

    [19]

    Moy A, Merlet C, Llovet X, Dugne O 2013 J. Phys. B:At. Mol. Opt. Phys. 46 115202Google Scholar

    [20]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 EPL 118 13001Google Scholar

    [21]

    Liang S, Wu Y, Zhao Z, Xia X G, Ke Z X, Pan M, Wang B Y, Zhang P 2021 Radiat. Phys. Chem. 180 109321Google Scholar

    [22]

    Merlet C, Llovet X, Fernandez-Varea J M 2006 Phys. Rev. A 73 062719Google Scholar

    [23]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708Google Scholar

    [24]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [25]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4001Google Scholar

    [26]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71Google Scholar

    [27]

    Zhao J L, Bai S, An Z, Zhu J J, Tan W J, Liu M T 2020 Radiat. Phys. Chem. 171 108722Google Scholar

    [28]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710Google Scholar

    [29]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [30]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [31]

    李颖涵, 安竹, 朱敬军, 李玲 2020 物理学报 69 133401Google Scholar

    Li Y H, An Z, Zhu J J, Li L 2020 Acta Phys. Sin. 69 133401Google Scholar

    [32]

    Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res. B 506 15Google Scholar

    [33]

    樊启文, 许国基, 杜英辉, 张榕 2008 原子能科学技术 42 925

    Fan Q W, Xu G J, Du Y H, Zhang R 2008 Atom. Energ. Sci. Technol 42 925

    [34]

    Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J 2018 Nucl. Instrum. Methods Phys. Res. B 418 68Google Scholar

    [35]

    Liu B, Ding W, An Z, Zhu J J, Zhang Z, Li L, Lin W P 2021 Fusion Eng. Des. 172 112751Google Scholar

    [36]

    Sabbatucci L, Scot V, Fernandez J E 2014 Radiat. Phys. Chem. 104 372Google Scholar

    [37]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [38]

    Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rathkopf J, Scofield J 1991 Report UCRL-50400 30 Lawrence Livermore National Laboratory, Livermore, CA

    [39]

    Mei C S, Wu Y, Yuan Y, Chang C H, Qian Z C, Zhu J J, Moharram K 2016 J. Phys. B: At. Mol. Opt. Phys. 49 245204

    [40]

    Silvina P L, Vasconcellos M A Z, Ruth H, Jorge C T 2012 Phys. Rev. A 86 042701Google Scholar

    [41]

    He F Q, Peng X F, Long X G, Luo Z M, An Z 1997 Nucl. Instrum. Methods Phys. Res. B 129 445Google Scholar

    [42]

    周长庚, 付玉川, 安竹, 罗正明 2000 强激光与粒子束 12 601

    Zhou C G, Fu Y C, An Z, Luo Z M 2000 High Power Laser and Particle Beams 12 601

    [43]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 Radiat. Phys. Chem. 122 66Google Scholar

    [44]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [45]

    Wu Y, An Z, Liu M T, Duan Y M, Tang C H, Luo Z M 2004 J. Phys. B:At. Mol. Opt. Phys. 37 4527Google Scholar

    [46]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006Google Scholar

    [47]

    Campos C S, Vasconcellos M A Z 2002 Phys. Rev. A 66 012719Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Su Ning, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping. Muon radiography simulation for underground palace of Qinshihuang Mausoleum. Acta Physica Sinica, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [4] Liu Yu, Xu Zhong-Feng, Wang Xing, Hu Peng-Fei, Zhang Xiao-An. Angular distribution of L characteristic X-ray emission from Au target impacted by photons. Acta Physica Sinica, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [5] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] Li Ying-Han, An Zhu, Zhu Jing-Jun, Li Ling. Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact. Acta Physica Sinica, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [7] Qian Yu-Rui, Wu Ying, Yang Xia-Tong, Chen Qiu-Xiang, You Jun-Dong, Wang Bao-Yi, Kuang Peng, Zhang Peng. Experimental study on Ti K shell ionization cross sections induced by 8-9.5 keV positrons. Acta Physica Sinica, 2018, 67(19): 192101. doi: 10.7498/aps.67.20180666
    [8] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] He Man-Li, Wang Xiao, Gao Si-Feng. Cross sections for the electron impact non-dissociative ion of hydrogen and its isotopic molecule. Acta Physica Sinica, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [13] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [15] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Spectrum analysis of X-ray based on Bohr-Sommerfeld quantum theory. Acta Physica Sinica, 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] FANG QUAN-YU, LI PING, LIU YONG, ZOU YU, QIU YU-BO. PHOTOIONIZATION CROSS SECTION AND BETHE COEFFCIENT OF Alq+(q=0—12). Acta Physica Sinica, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
Metrics
  • Abstract views:  6128
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2022
  • Accepted Date:  11 May 2022
  • Available Online:  18 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回