Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin-orbital coupling in strong interaction and global spin polarization

Gao Jian-Hua Huang Xu-Guang Liang Zuo-Tang Wang Qun Wang Xin-Nian

Citation:

Spin-orbital coupling in strong interaction and global spin polarization

Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian
PDF
HTML
Get Citation
  • In non-central relativistic heavy ion collisions, the colliding nuclear system possesses a huge global orbital angular momentum in the direction opposite to the normal of the reaction plane. Due to the spin-orbit coupling in strong interaction, such a huge orbital angular momentum leads to a global spin polarization of the quark matter system produced in the collision process. The global polarization effect in high energy heavy ion collisions was first predicted theoretically and confirmed by STAR experiments at the Relativistic Heavy Ion Collider in Brookhaven National Laboratory. The discovery has attracted much attention to the study of spin effects in heavy ion collision and leads to a new direction in high energy heavy ion physics—Spin Physics in Heavy Ion Collisions. In this paper, we briefly review the original ideas, the calculation methods, the main results and recent theoretical developments in last years. First, we present a short discussion of the spin-orbit coupling which is an intrinsic property for a relativistic fermionic quantum system. Then we review how the global orbital angular momentum can be generated in non-central heavy ion collisions and how the global orbital angular momentum can be transferred to the local orbital angular momentum distribution in two limit model---Landan fireball model and Bjorken scaling model. After that, we review how we can describe the scattering process with initial local orbital angular momentum in the formalism of scattering cross section in impact parameter space and how we calculate the polarization of the quarks and antiquarks in quark gluon plasma produced in non-central heavy ion collisions after single or multiple scattering. We also give a brief review on how the global polarization can be predicted from the formalism of relativistic hydrodynamics with the generalized Cooper-Frye formula with spin. Finally, we discuss how the quark's polarization can be transferred to the final hadron's polarization. We focus on the hyperon's polarization and vector meson's spin alignment produced in heavy-ion collisions.
      Corresponding author: Gao Jian-Hua, gaojh@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890710, 11890713, 11890714, 12175123, 12225502, 12075061, 12147101, 12135011), the National Key R&D Program of China (Grant No. 2022YFA1604900), the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1404100), and the U.S. DOE (Grant No. DE-AC02-05CH11231)
    [1]

    Adamczyk L, et al. [STAR Collaboration] 2017 Nature 548 62

    [2]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [3]

    Abdallah M, et al. [STAR Collaboration] 2023 Nature https://doi.org/10.1038/s41586-022-05557-5, [arXiv: 2204.02302[hep-ph]]

    [4]

    Liang Z T 2007 J. Phys. G 34 S 323

    [5]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [6]

    Liang Z T, Lisa M A, Wang X N 2020 Nucl. Phys. News 30 10Google Scholar

    [7]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [8]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [9]

    Becattini F, Liao J, Lisa M 2021 Lect. Notes Phys. 987

    [10]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [11]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [12]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502 (in Chinese)

    [13]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [14]

    Gao J H 2007 HEPNP 31 1181

    [15]

    Chen S W, Deng J, Gao J H, Wang Q 2009 Front. Phys. China 4 509Google Scholar

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [18]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [19]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [20]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shoy Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta Phys. Sin. Accepted (in Chinese)

    [21]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [22]

    Baum G, et al. [SLAC E80] 1980 Phys. Rev. Lett. 45 2000

    [23]

    Baum G, et al. [SLAC E130] 1983 Phys. Rev. Lett. 51 1135

    [24]

    Ashman J, et al. [European Muon Collaboration] 1988 Phys. Lett. B 206 364

    [25]

    Ashman J, et al. [European Muon Collaboration] 1989 Nucl. Phys. B 328 1

    [26]

    Aidala C A, Bass S D, Hasch D, Mallot G K 2013 Rev. Mod. Phys. 85 655Google Scholar

    [27]

    Bjorken J D 1983 Phys. Rev. D 27 140

    [28]

    Levai P, Muller B, Wang X N 1995 Phys. Rev. C 51 3326Google Scholar

    [29]

    Wang X N, Gyulassy M 1991 Phys. Rev. D 44 3501Google Scholar

    [30]

    Wang X N 1997 Phys. Rep. 280 287Google Scholar

    [31]

    Brodsky S J, Gunion J F, Kuhn J H 1977 Phys. Rev. Lett. 39 1120Google Scholar

    [32]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [33]

    Gyulassy M, Wang X N 1994 Nucl. Phys. B 420 583Google Scholar

    [34]

    Weldon H A 1982 Phys. Rev. D26 1394

    [35]

    Heiselberg H, Wang X N 1996 Nucl Phys. B462 389

    [36]

    Biro T S, Muller B 1993 Nucl. Phys. A 561 477Google Scholar

    [37]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [38]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

    [39]

    Fu B, Xu K, Huang X G, Song H 2021 Phys. Rev. C 103 024903Google Scholar

    [40]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [41]

    Xia X L, Li H, Huang X G, Huang H Z 2019 Phys. Rev. C 100 014913Google Scholar

    [42]

    Becattini F, Cao G, Speranza E 2019 Eur. Phys. J. C 79 741Google Scholar

    [43]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [44]

    Lee T D, Yang C N 1957 Phys. Rev. 108 1645Google Scholar

    [45]

    Gatto R 1958 Phys. Rev. 109 610Google Scholar

    [46]

    Ackerstaff K, et al. [OPAL Collaboration] 1997 Phys. Lett. B 412 210

    [47]

    Abreu P, et al. [DELPHI Collaboration] 1997 Phys. Lett. B 406 271

    [48]

    Xu Q H, Liu C X, Liang Z T 2001 Phys. Rev. D 63 111301Google Scholar

    [49]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [50]

    Pang L G, Petersen H, Wang Q Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [51]

    Xia X L, Li H, Tang Z B, Wang Q 2018 Phys. Rev. C 98 024905Google Scholar

    [52]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [53]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2205.15689[nucl-th]

    [54]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2206.05868[hep-ph]

    [55]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005 [Erratum: 2022 Phys. Rev. D 105 099903]

    [56]

    Abelev B I, et al. [STAR] 2007 Phys. Rev. C 76, 024915 [Erratum: 2017 Phys. Rev. C 95, 039906]

    [57]

    Adam J, et al. [STAR] 2018 Phys. Rev. C 98 014910

    [58]

    Adam J, et al. [STAR] 2019 Phys. Rev. Lett. 123 no.13, 132301

    [59]

    Acharya S, et al. [ALICE] 2020 Phys. Rev. C 101 044611 [erratum: 2022 Phys. Rev. C 105, 029902]

    [60]

    Adam J, et al. [STAR] 2021 Phys. Rev. Lett. 126 162301

    [61]

    Liang Z T 2022 arXiv: 2203.09786

    [62]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [63]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [64]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

  • 图 1  非对心碰撞示意图 [2]

    Figure 1.  Illustration of non-central heavy-ion collisions[2]

    图 2  整体轨道角动量与碰撞参数的关系 [13]

    Figure 2.  Global orbital angular momentum as a function of the impact parameter [13]

    图 3  归一化后的平均部分子纵向动量分布 [13]

    Figure 3.  The average longitudinal momentum distribution[13]

    图 4  归一化后的快度分布函数 $f_{\rm{p}}(Y, x, b, \sqrt{s})$ [13]

    Figure 4.  Normalized rapidity distribution $f_{\rm{p}}(Y, x, b, $$ \sqrt{s})$ [13]

    图 5  平均快度沿横向方向的分布$ \langle Y\rangle $ [13]

    Figure 5.  Average rapidity distribution $ \langle Y\rangle $ as a function of the transverse coordinate [13]

    图 6  夸克极化度$ –P_q $$ \alpha_s $$ \sqrt{\hat{s}}/T $的依赖关系 [13]

    Figure 6.  Quark polarization $ –P_q $ as a function of $ \sqrt{\hat{s}}/T $ for different $ \alpha_s $’s[13]

    图 7  非对心重离子碰撞中夸克整体极化示意图[9]

    Figure 7.  Illustration of the global quark polarization in non-central heavy-ion collisions [9]

    图 8  夸克极化度 $ P=\Delta\sigma/\sigma $随时间的演化[16]

    Figure 8.  Quark polarization $ P=\Delta\sigma/\sigma $ as a function of time[16]

    图 9  $ \Lambda $超子整体自旋极化的能量依赖[39]

    Figure 9.  $ \Lambda $ global polarization as a function of collision energy[39]

    图 10  超子$\Lambda,\; \Xi^-$$ \Omega^- $的整体极化的理论计算结果与实验结果的比较. 左图未考虑强子衰变效应的贡献, 右图考虑了衰变效应的贡献[43]

    Figure 10.  Theoretical calculation and comparison with experimental result for $ \Lambda, \;\Xi^- $ and $ \Omega^- $. The feed-down effect is taken into account in the left panel while not in the right panel[43]

    图 11  中心碰撞中矢量介子自旋排列随着方位角的变化[52]

    Figure 11.  $ \rho_{00} $ as a function of $ \Delta \psi $ in central collisions[52]

    表 1  超子极化在夸克组合模型和碎裂模型的结果比较。在碎裂模型计算中参数$ n_s $$ f_s $分别表示夸克-胶子等离子体中和夸克碎裂过程产生的奇异夸克相对于上下夸克的丰度[2]

    Table 1.  Hyperon’s polarizaiton from quark combination or fragmentation mechanism. In the fragmentation calculation, $ n_s $ and $ f_s $ denote the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively[2]

    超子 $ \Lambda $ $ \Sigma^+ $ $ \Sigma^0 $ $ \Sigma^- $ $ \Xi^0 $ $ \Xi^- $
    组合 $ P_s $ $ \dfrac{4 P_u-P_s}{3} $ $ \dfrac{2(P_u+P_d)-P_s}{3} $ $ \dfrac{4 P_d-P_s}{3} $ $ \dfrac{4 P_s-P_u}{3} $ $ \dfrac{4 P_s-P_d}{3} $
    碎裂 $ \dfrac{n_sP_s}{n_s+2 f_s} $ $ \dfrac{4 f_sP_u-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{2 f_s(P_u+P_d)-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{4 f_sP_d-n_sP_s}{3(2 f_s+n_s)} $ $ \dfrac{4 n_sP_s-f_sP_u}{3(2 n_s+f_s)} $ $ \dfrac{4 n_sP_s-f_sP_d}{3(2 n_s+f_s)} $
    DownLoad: CSV
  • [1]

    Adamczyk L, et al. [STAR Collaboration] 2017 Nature 548 62

    [2]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]

    [3]

    Abdallah M, et al. [STAR Collaboration] 2023 Nature https://doi.org/10.1038/s41586-022-05557-5, [arXiv: 2204.02302[hep-ph]]

    [4]

    Liang Z T 2007 J. Phys. G 34 S 323

    [5]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [6]

    Liang Z T, Lisa M A, Wang X N 2020 Nucl. Phys. News 30 10Google Scholar

    [7]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [8]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [9]

    Becattini F, Liao J, Lisa M 2021 Lect. Notes Phys. 987

    [10]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [11]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401 (in Chinese)

    [12]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502 (in Chinese)

    [13]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [14]

    Gao J H 2007 HEPNP 31 1181

    [15]

    Chen S W, Deng J, Gao J H, Wang Q 2009 Front. Phys. China 4 509Google Scholar

    [16]

    Huang X G, Huovinen P, Wang X N 2011 Phys. Rev. C 84 054910Google Scholar

    [17]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [18]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [19]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar

    [20]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shoy Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta Phys. Sin. Accepted (in Chinese)

    [21]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted (in Chinese)

    [22]

    Baum G, et al. [SLAC E80] 1980 Phys. Rev. Lett. 45 2000

    [23]

    Baum G, et al. [SLAC E130] 1983 Phys. Rev. Lett. 51 1135

    [24]

    Ashman J, et al. [European Muon Collaboration] 1988 Phys. Lett. B 206 364

    [25]

    Ashman J, et al. [European Muon Collaboration] 1989 Nucl. Phys. B 328 1

    [26]

    Aidala C A, Bass S D, Hasch D, Mallot G K 2013 Rev. Mod. Phys. 85 655Google Scholar

    [27]

    Bjorken J D 1983 Phys. Rev. D 27 140

    [28]

    Levai P, Muller B, Wang X N 1995 Phys. Rev. C 51 3326Google Scholar

    [29]

    Wang X N, Gyulassy M 1991 Phys. Rev. D 44 3501Google Scholar

    [30]

    Wang X N 1997 Phys. Rep. 280 287Google Scholar

    [31]

    Brodsky S J, Gunion J F, Kuhn J H 1977 Phys. Rev. Lett. 39 1120Google Scholar

    [32]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [33]

    Gyulassy M, Wang X N 1994 Nucl. Phys. B 420 583Google Scholar

    [34]

    Weldon H A 1982 Phys. Rev. D26 1394

    [35]

    Heiselberg H, Wang X N 1996 Nucl Phys. B462 389

    [36]

    Biro T S, Muller B 1993 Nucl. Phys. A 561 477Google Scholar

    [37]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [38]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

    [39]

    Fu B, Xu K, Huang X G, Song H 2021 Phys. Rev. C 103 024903Google Scholar

    [40]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [41]

    Xia X L, Li H, Huang X G, Huang H Z 2019 Phys. Rev. C 100 014913Google Scholar

    [42]

    Becattini F, Cao G, Speranza E 2019 Eur. Phys. J. C 79 741Google Scholar

    [43]

    Li H, Xia X L, Huang X G, Huang H Z 2022 Phys. Lett. B 827 136971Google Scholar

    [44]

    Lee T D, Yang C N 1957 Phys. Rev. 108 1645Google Scholar

    [45]

    Gatto R 1958 Phys. Rev. 109 610Google Scholar

    [46]

    Ackerstaff K, et al. [OPAL Collaboration] 1997 Phys. Lett. B 412 210

    [47]

    Abreu P, et al. [DELPHI Collaboration] 1997 Phys. Lett. B 406 271

    [48]

    Xu Q H, Liu C X, Liang Z T 2001 Phys. Rev. D 63 111301Google Scholar

    [49]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [50]

    Pang L G, Petersen H, Wang Q Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [51]

    Xia X L, Li H, Tang Z B, Wang Q 2018 Phys. Rev. C 98 024905Google Scholar

    [52]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [53]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2205.15689[nucl-th]

    [54]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 arXiv: 2206.05868[hep-ph]

    [55]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005 [Erratum: 2022 Phys. Rev. D 105 099903]

    [56]

    Abelev B I, et al. [STAR] 2007 Phys. Rev. C 76, 024915 [Erratum: 2017 Phys. Rev. C 95, 039906]

    [57]

    Adam J, et al. [STAR] 2018 Phys. Rev. C 98 014910

    [58]

    Adam J, et al. [STAR] 2019 Phys. Rev. Lett. 123 no.13, 132301

    [59]

    Acharya S, et al. [ALICE] 2020 Phys. Rev. C 101 044611 [erratum: 2022 Phys. Rev. C 105, 029902]

    [60]

    Adam J, et al. [STAR] 2021 Phys. Rev. Lett. 126 162301

    [61]

    Liang Z T 2022 arXiv: 2203.09786

    [62]

    Jiang Y, Guo X, Zhuang P 2021 Lect. Notes Phys. 987 167

    [63]

    Gao J H, Liang Z T, Wang Q 2021 Int. J. Mod. Phys. A 36 2130001Google Scholar

    [64]

    Hidaka Y, Pu P, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

  • [1] Liu Ming-Jie, Tian Ya-Li, Wang Yu, Li Xiao-Xiao, He Xiao-Hu, Gong Ting, Sun Xiao-Cong, Guo Gu-Qing, Qiu Xuan-Bing, Li Chuan-Liang. Calculation of spectroscopic constants for O-2 containing spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [3] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [4] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [5] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [6] Jiang Ze-Fang, Wu Xiang-Yu, Yu Hua-Qing, Cao Shan-Shan, Zhang Ben-Wei. The direct flow of charged particles and the global polarization of hyperons in 200 AGeV Au+Au collisions at RHIC. Acta Physica Sinica, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [7] Zhang Shan-Liang, Xing Hong-Xi, Wang En-Ke. Jet quenching effect in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
    [8] He Ya-Ping, Chen Ming-Xia, Pan Jie-Feng, Li Dong, Lin Gang-Jun, Huang Xin-Hong. Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Acta Physica Sinica, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [9] Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua. Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Physica Sinica, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [10] Pu Shi, Huang Xu-Guang. Relativistic spin hydrodynamics. Acta Physica Sinica, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [11] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [12] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [13] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [14] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [15] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [16] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [17] He Li, Yu Zeng-Qiang. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling. Acta Physica Sinica, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [18] Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping. Double reflection of spin-orbit-coupled cold atoms. Acta Physica Sinica, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [19] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [20] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
Metrics
  • Abstract views:  5632
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2023
  • Accepted Date:  12 February 2023
  • Available Online:  23 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回