-
In order to explore the levitation and migration behavior of strongly absorbing nanoparticle clusters in air by using laser technique, in this study trapping and levitating nanoparticle clusters is proposed based on the counter-propagated bi-Bessel beams, and then the clusters are released to observe and analyze their migration behaviors. Two Bessel beams are generated by a conical lens and polarizing beam splitter, arranged horizontally in reverse to form a three-dimensional optical trap. The stiffness of the optical trap can be controlled by adjusting the power ratio of the two Bessel beams. The particles in the levitation chamber are fluidized through weak airflow, and then captured and levitated by a light trap. A high-speed camera is used to record the levitation and migration process of clusters. The particle motion parameters can be obtained through image analysis. The strong-absorbing ultrafine coal particle clusters are first selected to conduct the experiments on their levitation and release migration. Then, the photophorestic force, gravity, buoyancy, drag force, and thermophorestic force acting on the clusters are calculated and analyzed. The experimental and computational results indicate that the photophorestic force of air-borne strong-absorbing nanoparticle clusters generated by laser illumination dominates the levitation; nanoparticle clusters can be stably levitated in a three-dimensional potential well formed by counter-propagated bi-Bessel beams, achieving dynamic equilibrium with gravity, buoyancy, drag, etc. by adjusting the levitation position. The relative instability parameter of levitation is used to evaluate the stability of air-borne strong-absorbing nanoparticle clusters, and the minimum relative instability of ultrafine coal particle clusters reaches 0.075. By analyzing the images of nanoparticle cluster recorded by high-speed camera after being released, the migration motion parameters of the cluster can be obtained, therefore the thermophorestic force acting on the cluster is accurately measured. For the ultrafine coal particle clusters with equivalent particle sizes in a range of approximately 13–21 μm, the magnitudes of their thermophorestic forces are in a range of 10–11–10–10 N. As the cluster size increases, the thermophorestic force increases linearly, which is consistent with the theoretical calculation trend. The use of laser to levitate and release particles provides a novel approach for measuring and analyzing thermophorestic force, and also presents a novel manipulation tool for controlling and transporting particles in a gaseous medium.
-
Keywords:
- laser levitation /
- photophorestic force /
- thermophoretic force /
- strong-absorbing nanoparticle clusters
[1] Ashkin A, Dziedzic J 1975 Science 187 1073Google Scholar
[2] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 物理学报 63 178802Google Scholar
Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar
[3] Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar
[4] Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar
[5] Zhang Z, Cannan D, Liu J J, Zhang P, Christodoulides D N, Chen Z G 2012 Opt. Express 20 16212Google Scholar
[6] Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar
[7] Rings D, Schachoff R, Selmke M, Cichos F, Kroy K 2010 Phys. Rev. Lett. 105 090604Google Scholar
[8] Gong Z Y, Pan Y L, Wang C J 2016 Rev. Sci. Instrum. 87 156Google Scholar
[9] Keh H J, Tu H J 2001 Colloids Surfaces A 176 213Google Scholar
[10] Malaia N V, Shchukin E R 2019 Tech. Phys. 64 458Google Scholar
[11] Chang Y C, Keh H J 2012 Journal of Aerosol Science 50 1Google Scholar
[12] Maxwell J C 1879 Phil. Trans. R. Soc. 170 231Google Scholar
[13] Kennard E H 1938 Kinetic Theory of Gases (New York: McGraw-Hill) p291
[14] Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101 [崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 物理学报 70 055101]Google Scholar
Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar
[15] Greene W M, Spjut R E, Bar-Ziv E, Sarofim A F, Longwell J P 1985 J. Opt. Soc. Am. B 2 998Google Scholar
[16] Chernyah V, Beresnev S 1993 J. Aerosol Sci. 24 857Google Scholar
[17] Mackowski D W 1989 Int. J. Heat Mass Transf. 32 843Google Scholar
[18] Frueh J, Rutkowski S, Si T, Ren Y X, Gai M, Tverdokhlebov S I, Qiu G, Schmitt J, He Q, Wang J 2021 Appl. Surf. Sci. 549 149319Google Scholar
[19] Burelbach J, Zupkauskas M, Lamboll R, Lan Y, Eiser E 2017 J. Chem. Phys. 147 094906Google Scholar
[20] Li L, Loyalka S K, Tamadate T, Sapkota D, Ouyang H, Hogan Jr C J 2024 J. Aerosol Sci. 178 106337Google Scholar
[21] Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar
[22] Zheng F, Davis E J 2001 Aerosol Sci. 32 1421Google Scholar
[23] Bosworth R W, Ventura A L, Ketsdever A D, Gimelshein S F 2016 J. Fluid Mech. 805 207Google Scholar
[24] 黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬 2023 物理学报 72 174201Google Scholar
Huang X F, Chen C, Li J X, Zhang M Q, Li S J 2023 Acta Phys. Sin. 72 174201Google Scholar
[25] Dusel P W, Kerker M, Cooke D D 1979 J. Opt. Sot. Am. 69 55Google Scholar
[26] Pluchino A B 1983 Appl. Opt. 22 103Google Scholar
[27] Yalamov Y I, Kutukov V B, Shchukin E R 1976 J. Colioid Interface Sci. 57 564Google Scholar
[28] McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar
[29] Wang H Y, Wang J J, Dong W Q, Han Y P, Ambrosio L A, Liu L 2021 Opt. Express 29 26894Google Scholar
[30] Epstein P S 1929 Z. Phys. 54 537Google Scholar
-
图 6 不同粒径团簇的位移矢量图与相应的热泳力、曳力和有效重力的变化情况 (a), (b)团簇1; (c), (d) 团簇2; (e), (f) 团簇3; (g), (h) 团簇4; (i), (j) 团簇5; (k), (l) 团簇6
Figure 6. Comparison of displacement vector and the corresponding thermophorestic force, drag force, and effective gravity: (a), (b) Cluster 1; (c), (d) cluster 2; (e), (f) cluster 3; (g), (h) cluster 4; (i), (j) cluster 5; (k), (l) cluster 6.
-
[1] Ashkin A, Dziedzic J 1975 Science 187 1073Google Scholar
[2] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 物理学报 63 178802Google Scholar
Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar
[3] Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar
[4] Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar
[5] Zhang Z, Cannan D, Liu J J, Zhang P, Christodoulides D N, Chen Z G 2012 Opt. Express 20 16212Google Scholar
[6] Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar
[7] Rings D, Schachoff R, Selmke M, Cichos F, Kroy K 2010 Phys. Rev. Lett. 105 090604Google Scholar
[8] Gong Z Y, Pan Y L, Wang C J 2016 Rev. Sci. Instrum. 87 156Google Scholar
[9] Keh H J, Tu H J 2001 Colloids Surfaces A 176 213Google Scholar
[10] Malaia N V, Shchukin E R 2019 Tech. Phys. 64 458Google Scholar
[11] Chang Y C, Keh H J 2012 Journal of Aerosol Science 50 1Google Scholar
[12] Maxwell J C 1879 Phil. Trans. R. Soc. 170 231Google Scholar
[13] Kennard E H 1938 Kinetic Theory of Gases (New York: McGraw-Hill) p291
[14] Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101 [崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 物理学报 70 055101]Google Scholar
Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar
[15] Greene W M, Spjut R E, Bar-Ziv E, Sarofim A F, Longwell J P 1985 J. Opt. Soc. Am. B 2 998Google Scholar
[16] Chernyah V, Beresnev S 1993 J. Aerosol Sci. 24 857Google Scholar
[17] Mackowski D W 1989 Int. J. Heat Mass Transf. 32 843Google Scholar
[18] Frueh J, Rutkowski S, Si T, Ren Y X, Gai M, Tverdokhlebov S I, Qiu G, Schmitt J, He Q, Wang J 2021 Appl. Surf. Sci. 549 149319Google Scholar
[19] Burelbach J, Zupkauskas M, Lamboll R, Lan Y, Eiser E 2017 J. Chem. Phys. 147 094906Google Scholar
[20] Li L, Loyalka S K, Tamadate T, Sapkota D, Ouyang H, Hogan Jr C J 2024 J. Aerosol Sci. 178 106337Google Scholar
[21] Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar
[22] Zheng F, Davis E J 2001 Aerosol Sci. 32 1421Google Scholar
[23] Bosworth R W, Ventura A L, Ketsdever A D, Gimelshein S F 2016 J. Fluid Mech. 805 207Google Scholar
[24] 黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬 2023 物理学报 72 174201Google Scholar
Huang X F, Chen C, Li J X, Zhang M Q, Li S J 2023 Acta Phys. Sin. 72 174201Google Scholar
[25] Dusel P W, Kerker M, Cooke D D 1979 J. Opt. Sot. Am. 69 55Google Scholar
[26] Pluchino A B 1983 Appl. Opt. 22 103Google Scholar
[27] Yalamov Y I, Kutukov V B, Shchukin E R 1976 J. Colioid Interface Sci. 57 564Google Scholar
[28] McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar
[29] Wang H Y, Wang J J, Dong W Q, Han Y P, Ambrosio L A, Liu L 2021 Opt. Express 29 26894Google Scholar
[30] Epstein P S 1929 Z. Phys. 54 537Google Scholar
Catalog
Metrics
- Abstract views: 1291
- PDF Downloads: 64
- Cited By: 0