Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system

Hou Lei Guan Shu-Yang Yin Jun Zhang Yu-Jun Xiao Yi-Ming Xu Wen Ding Lan

Citation:

High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system

Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan
cstr: 32037.14.aps.73.20241106
PDF
HTML
Get Citation
  • Compared with graphene, two-dimensional (2D) transition metal sulfides, represented by mono-/few-layer MoS2, have tunable non-zero bandgap, and thus their applications in optoelectronic devices are more advantageous. By using classical electromagnetic theory and finite element method (FEM), we investigate the cavity coupled plasmon polaritons (CCPPs) formed through the coupling between cavity modes in a resonator and plasmons in monolayer MoS2, particularly calculate and verify the properties of the high-order CCPPs. In previous work, it was demonstrated that the substrates, defects, and polycrystalline grains of the CVD grown monolayer MoS2 usually induce weak electron localization, which leads to the deviation from the Drude model based on the approximation of free electron gas. Therefore, here we use the Drude-Smith model with characteristic parameters obtained experimentally to describe the optical conductivity of monolayer MoS2 in our theoretical calculation and simulation. Then, we not only derive and solve the dispersion equations of the high-order CCPPs, but also verify the existence and analyze the properties of these high-order modes. Specifically, there are three types of CCPPs in the asymmetric cavity-monolayer MoS2 system, i.e. the FP-like-modes (FPLMs), the surface-plasmon-like modes (SPLMs), and the quasi-localized modes (QLMs). Among them, the FPLMs and QLMs can support high-order modes whereas the SPLMs only support the fundamental modes. According to our model, we calculate the wave localization properties for the 7th-order and 8th-order FPLM, the 3rd-order and 6th-order QLM, and the SPLM. These theoretical results are in good agreement with the simulation results. Moreover, the effects of weak electron localization are also shown by comparing the field distributions of the CCPPs based on the Drude model with those based on the Drude-Smith model. It is found that weak electron localization can reduce the coupling between the cavity modes and the plasmons in monolayer MoS2. These results can deepen our understanding of the excitation of plasmons in 2D materials as well as the modulation of their properties. Furthermore, the theoretical model can also be extended to other plasmonic systems related to low-dimensional and topological quantum materials.
      Corresponding author: Xu Wen, wenxu_issp@aliyun.com ; Ding Lan, dinglan@ynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12364033, U2230122, U2067207), the Basic Research Project of Yunnan Province, China (Grant No. 202401AS070135), the High-level Personnel Training Program of Yunnan Province, China (Grant No. YNWR-QNBJ-2018-037), and the Research Innovation Foundation for Graduate Students of Yunnan University, China (Grant No. KC-23233799).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Fan Y C, Shen N H, Zhang F L, Zhao Q, Wu H J, Fu Q H, Wei Z Y, Li H Q, Soukoulis C M 2019 Adv. Opt. Mater. 7 1800537Google Scholar

    [4]

    Lu W, Ling J W, Xiu F X, Sun D 2018 Phys. Rev. B 98 104310Google Scholar

    [5]

    Hou L, Yang Y K, Li A L, Wang Q J, Li Q N, Wu M, Ji P C, Zhang Y J, Xiao Y M, Xu W, Xiu F X, Ding L 2023 Phys. Rev. B 108 115416Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [8]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [9]

    Liu X, Hou L, Ji P C, Wang Q J, Wu M, Xiao Y M, Xu W, Ding L 2023 Nanophotonics 12 4441Google Scholar

    [10]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [11]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [12]

    Zhang S J, Pei Y F, Hu S Q, Wu N, Chen D Q, Lian C, Meng S 2023 Chin. Phys. Lett. 40 077502Google Scholar

    [13]

    Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kena-Cohen S, Menon V M 2015 Nat. Photonics 9 30Google Scholar

    [14]

    Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C de, Grosse C, Nijs B de, Mertens J, Tartakovskii A I, Baumberg J J 2017 Nat. Commun. 8 1296Google Scholar

    [15]

    Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M, Shegai T 2019 Nat. Nanotechnol. 14 679Google Scholar

    [16]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [17]

    Hu G W, Krasnok A, Mazor Y, Qu C W, Alu A 2020 Nano Lett. 20 3217Google Scholar

    [18]

    Sun B, Wang Z, Liu Z, Tan X, Liu X, Shi T, Zhou J, Liao G 2019 Adv. Funct. Mater. 29 1900541Google Scholar

    [19]

    Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021 Nanophotonics 10 1871Google Scholar

    [20]

    Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021 Nano Lett. 21 3083Google Scholar

    [21]

    Petrić M M, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier A V, Kaniber M, Müller K, Finley J J 2022 Nano Lett. 22 561Google Scholar

    [22]

    Zhu Y X, Yang J W, Abad-Arredondo J, Fernández-Domínguez A I, Garcia-Vidal F J, Natelson D 2024 Nano Lett. 24 525Google Scholar

    [23]

    Wang C, Xu W, Mei H Y, Qin H, Zhao X N, Zhang C, Yuan H F, Zhang J, Xu Y, Li P, Li M 2019 Opt. Lett. 44 4139Google Scholar

    [24]

    Liu J, Ding L, Zhao C X, Liang C N, Xiao Y M, Zhang J, Xu W 2019 IEEE Photonics J. 11 4800608

    [25]

    Guo T Y, Hou L, Xu W, Xiao Y M, Ding L 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1711Google Scholar

    [26]

    Ding L, Xu W, Zhao C, Wang S, Liu H 2015 Opt. Lett. 40 4524Google Scholar

    [27]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) p21

  • 图 1  非对称谐振腔-单层MoS2系统结构示意图

    Figure 1.  Diagram of the asymmetric cavity-monolayer MoS2 system.

    图 2  (a) 单层MoS2光电导率随频率的变化; (b) 蓝宝石衬底的复折射率随频率的变化. 图(a)中使用普适电导率$\varSigma_0 = e^2/4 \hbar $对光电导率实部和虚部做归一化

    Figure 2.  (a) Frequency dependency of optical conductivity of monolayer MoS2; (b) frequency dependency of the complex refractive index of the sapphire substrate. In panel (a) both the real and imaginary parts of the optical conductivity are normalized by universal conductivity $\varSigma_0 = e^2/4 \hbar $.

    图 3  (a) 非对称谐振腔等离系统中CCPP的色散关系图; (b) FPLM, (c) QLM和(d) SPLM模式的局域程度

    Figure 3.  (a) Dispersion relations of the CCPPs supported by the ACPS and the localization of (b) FPLM, (c) QLM, and (d) SPLM modes.

    图 4  CCPP的FEM模拟 (a) 模拟模型示意图; (b) NF = 7和(c) NF = 8时FPLM, (d) 基模SPLM以及(e) NQ = 3和(f) NQ = 6时QLM的电磁场Ez空间分布. 注意此处电场分量Ez都已使用各自的最大值E0做了归一化

    Figure 4.  FEM simulation results of the CCPPs: (a) Diagram of the simulation model. Field distributions of Ez for the FPLMs of (b) NF = 7 and (c) NF = 8, (d) the fundamental mode of SPLM, and the QLMs of (e) NQ = 3 and (f) NQ = 6. Note that the fields Ez are normalized by the corresponding maximum values E0.

    图 5  局域因子C不同时, CCPP的FEM模拟 (a)—(c) C = –0.75时的SPLM (a), QLM (b)及FPLM (c); (d)—(f) C = 0 时的SPLM (d), QLM (e)及FPLM (f). 注意此处电场分量Ez都未做归一化

    Figure 5.  FEM simulation results of the CCPPs with different C: (a)–(c) Field distributions of (a) SPLM, (b) QLM, and (c) FPLM for C = –0.75; (d)–(f) results of (d) SPLM, (e) QLM, and (f) FPLM for C = 0. Note that the fields Ez are not normalized.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Fan Y C, Shen N H, Zhang F L, Zhao Q, Wu H J, Fu Q H, Wei Z Y, Li H Q, Soukoulis C M 2019 Adv. Opt. Mater. 7 1800537Google Scholar

    [4]

    Lu W, Ling J W, Xiu F X, Sun D 2018 Phys. Rev. B 98 104310Google Scholar

    [5]

    Hou L, Yang Y K, Li A L, Wang Q J, Li Q N, Wu M, Ji P C, Zhang Y J, Xiao Y M, Xu W, Xiu F X, Ding L 2023 Phys. Rev. B 108 115416Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [8]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [9]

    Liu X, Hou L, Ji P C, Wang Q J, Wu M, Xiao Y M, Xu W, Ding L 2023 Nanophotonics 12 4441Google Scholar

    [10]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [11]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [12]

    Zhang S J, Pei Y F, Hu S Q, Wu N, Chen D Q, Lian C, Meng S 2023 Chin. Phys. Lett. 40 077502Google Scholar

    [13]

    Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kena-Cohen S, Menon V M 2015 Nat. Photonics 9 30Google Scholar

    [14]

    Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C de, Grosse C, Nijs B de, Mertens J, Tartakovskii A I, Baumberg J J 2017 Nat. Commun. 8 1296Google Scholar

    [15]

    Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M, Shegai T 2019 Nat. Nanotechnol. 14 679Google Scholar

    [16]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [17]

    Hu G W, Krasnok A, Mazor Y, Qu C W, Alu A 2020 Nano Lett. 20 3217Google Scholar

    [18]

    Sun B, Wang Z, Liu Z, Tan X, Liu X, Shi T, Zhou J, Liao G 2019 Adv. Funct. Mater. 29 1900541Google Scholar

    [19]

    Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021 Nanophotonics 10 1871Google Scholar

    [20]

    Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021 Nano Lett. 21 3083Google Scholar

    [21]

    Petrić M M, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier A V, Kaniber M, Müller K, Finley J J 2022 Nano Lett. 22 561Google Scholar

    [22]

    Zhu Y X, Yang J W, Abad-Arredondo J, Fernández-Domínguez A I, Garcia-Vidal F J, Natelson D 2024 Nano Lett. 24 525Google Scholar

    [23]

    Wang C, Xu W, Mei H Y, Qin H, Zhao X N, Zhang C, Yuan H F, Zhang J, Xu Y, Li P, Li M 2019 Opt. Lett. 44 4139Google Scholar

    [24]

    Liu J, Ding L, Zhao C X, Liang C N, Xiao Y M, Zhang J, Xu W 2019 IEEE Photonics J. 11 4800608

    [25]

    Guo T Y, Hou L, Xu W, Xiao Y M, Ding L 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1711Google Scholar

    [26]

    Ding L, Xu W, Zhao C, Wang S, Liu H 2015 Opt. Lett. 40 4524Google Scholar

    [27]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) p21

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] Ma Shao-Qing, Gong Shi-Xiang, Zhang Wei, Lu Cheng-Biao, Li Xiao-Li, Li Ying-Wei. Neuronal growth and development promoted by low-intensity roadband terahertz radiation. Acta Physica Sinica, 2022, 71(20): 208701. doi: 10.7498/aps.71.20220636
    [4] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [6] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [7] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [8] Huang Kun, Wang Teng-Fei, Yao Ji. Nonlinear plate theory of single-layered MoS2 with thermal effect. Acta Physica Sinica, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [9] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [10] Zhang Peng, Liu Zheng, Dai Jian-Ming, Yang Zhao-Rong, Su Fu-Hai. Anisotropic resonance absorptions induced by high magnetic field in ZnCr2Se4. Acta Physica Sinica, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [11] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [12] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [13] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [14] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [15] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [16] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [17] Tao Ze-Hua, Dong Hai-Ming. Electron screening lengths and plasma spectrum in single layer MoS2. Acta Physica Sinica, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [18] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng. Design and performance analysis of THz microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [19] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [20] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
Metrics
  • Abstract views:  301
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2024
  • Accepted Date:  14 October 2024
  • Available Online:  23 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回