Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional multi-physics simulation of dual-frequency capacitively coupled Ar/CF4 plasma source

LI Jingze ZHAO Mingliang ZHANG Yuru GAO Fei WANG Younian

Citation:

Three-dimensional multi-physics simulation of dual-frequency capacitively coupled Ar/CF4 plasma source

LI Jingze, ZHAO Mingliang, ZHANG Yuru, GAO Fei, WANG Younian
cstr: 32037.14.aps.74.20251121
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Capacitively coupled plasma sources, which are widely used in the etching and deposition processes of semiconductor manufacturing, have the advantages of simple structure, low cost, and the ability to generate large-area uniform plasma. To meet the requirements of advanced processes, fluid models are usually required to simulate plasma sources and optimize their important plasma parameters, such as density and uniformity. In this work, an independently-developed capacitively coupled plasma fast simulation program is employed to conduct three-dimensional fluid simulations of a dual-frequency capacitively coupled Ar/CF4 plasma source, with the aims of verifying the effectiveness of the program and investigating the influence of discharge parameters such as gas pressure, high and low-frequency voltages, low frequency, and background component ratios. The simulation results show that the program has an extremely high simulation speed. As the low-frequency voltage increases, the plasma density initially remains approximately constant and then significantly increases, while the plasma uniformity initially rises and then significantly decreases. In this process, the γ-mode heating of the low-frequency source increases and becomes the dominant mode in replace of the α-mode of high-frequency source. As the lower frequency increases, plasma density initially remains approximately constant and then slightly increases, while the plasma uniformity does not change much. this is because the γ-mode heating is frequency independent, while the α-mode heating is much lower than high-frequency source. As the high-frequency voltage increases, the plasma density significantly increases, while the plasma uniformity initially rises and then significantly decreases, the α-mode heating of high-frequency source is significantly enhanced in this process. As the pressure increases, the plasma density significantly increases, and the plasma uniformity also rises significantly, the reason is the more complete collision between particles and background gases. As the Ar ratio in background gases increases, the plasma density changes slightly, the density of Ar-related particles generally increases and the density of CF4-related particles generally decreases, although there are some non-monotonic changes in particle densities, which reflects the mutual promotion between some ionization and dissociation reactions.
      Corresponding author: ZHAO Mingliang, mlzhao@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11935005).
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp387−457

    [2]

    王友年, 宋远红, 张钰如 2024 射频等离子体物理基础(北京: 科学出版社) 第236页

    Wang Y N, Song Y H, Zhang Y R 2024 Fundamentals of Radio-frequency Plasma Physics (Beijing: Science Press) p236

    [3]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [4]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [5]

    Saikia P, Bhuyan H, Escalona M, Favre M, Rawat R S, Wyndham E 2018 AIP Adv. 8 045113Google Scholar

    [6]

    Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B, Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017Google Scholar

    [7]

    Vahedi V, DiPeso G, Birdsall C K, Lieberman M A, Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261Google Scholar

    [8]

    Wünderlich D, Gutser R, Fantz U 2009 Plasma Sources Sci. Technol. 18 045031Google Scholar

    [9]

    Passchier J D P, Goedheer W J 1993 J. Appl. Phys. 74 3744Google Scholar

    [10]

    Alves L L, Marques L 2012 Plasma Phys. Controlled Fusion 54 124012Google Scholar

    [11]

    Graves D B 1987 J. Appl. Phys. 62 88Google Scholar

    [12]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [13]

    Kushner M J 2007 IEEE Trans. Plasma Sci. 14 188

    [14]

    Yang Y, Kushner M J 2010 Plasma Sources Sci. Technol. 19 055011Google Scholar

    [15]

    Model Low-Temperature Plasma Sources with the Plasma Module https://www.comsol.com/plasma-module [2025-8-16]

    [16]

    Benchmark Model of a Capacitively Coupled Plasma https://www.comsol.com/model/benchmark-model-of-a-capacitively-coupled-plasma-11745 [2025-8-16]

    [17]

    Model of an Argon/Chlorine Inductively Coupled Plasma Reactor with RF Bias https://www.comsol.com/model/model-of-an-argonchlorine-inductively-coupled-plasma-reactor-with-rf-bias-110171 [2025-8-16]

    [18]

    Model of an Argon/Oxygen Capacitively Coupled Plasma Reactor https://www.comsol.com/model/model-of-an-argonoxygen-capacitively-coupled-plasma-reactor-108931 [2025-8-16]

    [19]

    Li J Z, Zhao M L, Zhang Y R, Gao F, Wang Y N 2025 Comput. Phys. Commun. 307 109392Google Scholar

    [20]

    Wen Y Y, Li X Y, Zhang Y R, Song Y H, Wang Y N 2022 J. Phys. D: Appl. Phys. 55 200001Google Scholar

    [21]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. , A 22 511-530Google Scholar

    [22]

    Zhang Y R, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 485204Google Scholar

  • 图 1  腔室结构示意图(r-z平面)

    Figure 1.  Diagram of chamber structure (r-z plane).

    图 2  模拟区域的网格划分

    Figure 2.  Discrete mesh of the simulation area.

    图 3  双频容性耦合Ar/CF4等离子体中代表性的组分收敛曲线, 其纵坐标表示相应粒子密度的空间平均值

    Figure 3.  The representative convergence curves of species in dual frequency capacitively-coupled Ar/CF4 plasma, where the y-axis represents the spatially averaged density.

    图 4  双频容性耦合Ar/CF4等离子体中(a)电子密度、(b)电子温度、(c)电势和(d)—(j)离子密度的三维模拟结果

    Figure 4.  The three-dimensional simulation results of (a) electron density, (b) electron temperature, (c) potential and (d)–(j) ion densities in the dual frequency capacitively-coupled Ar/CF4 plasma.

    图 5  双频容性耦合Ar/CF4等离子体中(a)—(f)背景气体的密度、流速、温度以及(g)—(l)活性中性粒子密度的三维模拟结果

    Figure 5.  The three-dimensional simulation results of (a)–(f) densities, velocities and temperatures of background gases and (g)–(l) densities of active neutral particles in the dual frequency capacitively-coupled Ar/CF4 plasma.

    图 6  不同低频电压下(a)电子密度、(b)电子温度、(c) Ar+离子密度、(d) $\rm CF_3^+ $离子密度、(e) F离子密度和(f) F原子密度的r方向空间分布

    Figure 6.  The radial spatial distribution of (a) electron density, (b) electron temperature, (c) Ar+ density, (d) $\rm CF_3^+ $ density, (e) F density, and (f) F density under different low-frequency voltages.

    图 7  不同低频频率下(a)电子密度、(b)电子温度、(c) Ar+离子密度、(d) $\rm CF_3^+ $离子密度、(e) F离子密度、(f) F原子密度的r方向空间分布

    Figure 7.  The radial spatial distribution of (a) electron density, (b) electron temperature, (c) Ar+ density, (d) $\rm CF_3^+$ density, (e) F density, and (f) F density under different lower frequencies.

    图 8  不同高频电压下(a)电子密度、(b)电子温度、(c) Ar+离子密度、(d) $\rm CF_3^+$离子密度、(e) F离子密度、(f) F原子密度的r方向空间分布

    Figure 8.  The radial spatial distribution of (a) electron density, (b) electron temperature, (c) Ar+ density, (d) $\rm CF_3^+ $ density, (e) F density, and (f) F density under different high-frequency voltages.

    图 9  不同气压下(a)电子密度、(b)电子温度、(c) Ar+离子密度、(d) $\rm CF_3^+ $离子密度、(e) F离子密度、(f) F原子密度的r方向空间分布

    Figure 9.  The radial spatial distribution of (a) electron density, (b) electron temperature, (c) Ar+ density, (d) $\rm CF_3^+ $ density, (e) F density, and (f) F density under different pressures.

    图 10  不同组分比例下(a)电子密度、(b)电子温度、(c) Ar+离子密度、(d) $\rm CF_3^+ $离子密度、(e) F离子密度、(f) F原子密度的r方向空间分布

    Figure 10.  The radial spatial distribution of (a) electron density, (b) electron temperature, (c) Ar+ density, (d) $\rm CF_3^+ $ density, (e) F density, and (f) F density under different component ratios.

    表 1  模型中考虑的碰撞反应

    Table 1.  Collision reactions considered in the model.

    编号 反应表达式 文献 编号 反应表达式 文献
    1 e + Ar → e + Ar [19] 39 e + CF4 → CF3 + F [19]
    2 Ar+ + Ar → Ar+ + Ar [19] 40 $\rm e + CF_4 \to CF_3^- + F $ [19]
    3 $\rm CF_3^+ + Ar \to CF_3^+ + Ar $ [19] 41 F + CF3 → e + CF4 [19]
    4 $\rm CF_2^+ + Ar \to CF_2^+ + Ar $ [19] 42 F + CF2 → e + CF3 [19]
    5 CF+ + Ar → CF+ + Ar [19] 43 F + CF → e + CF2 [19]
    6 F+ + Ar → F+ + Ar [19] 44 F + F → e + F2 [19]
    7 F + Ar → F + Ar [19] 45 $\rm CF_3^- + CF_3^+ \to 2CF_3 $ [19]
    8 $\rm CF_3^- + Ar \to CF_3^- + Ar $ [19] 46 $\rm F^- + CF_3^+ \to CF_3 + F $ [19]
    9 Ar* + Ar → Ar* + Ar [19] 47 $\rm F^ + CF_3^+ \to CF_2 + F_2 $ [19]
    10 CF3 + Ar → CF3 + Ar [19] 48 $\rm F^- + CF_2^+ \to CF_2 + F $ [19]
    11 CF2 + Ar → CF2 + Ar [19] 49 $\rm F^- + CF_2^+ \to CF + F_2 $ [19]
    12 CF + Ar → CF + Ar [19] 50 F + CF+ → CF + F [19]
    13 F2 + Ar → F2 + Ar [19] 51 F + F+ → 2F [19]
    14 F + Ar → F + Ar [19] 52 $\rm CF_3^- + CF_2^+ \to CF_3 + CF_2 $ [19]
    15 e + CF4 → e + CF4 [19] 53 $\rm CF_3^- + CF^+ \to CF_3 + CF $ [19]
    16 Ar+ + CF4 → Ar+ + CF4 [19] 54 $\rm CF_3^- + F^+ \to CF_3 + F $ [19]
    17 $\rm CF_3^+ + CF_4 \to CF_3^+ + CF_4 $ [19] 55 $\rm CF_2^+ + CF_3 \to CF_3^+ + CF_2 $ [19]
    18 $\rm CF_2^+ + CF_4 \to CF_2^+ + CF_4 $ [19] 56 $\rm CF^+ + CF_3 \to CF_3^+ + CF $ [19]
    19 CF+ + CF4 → CF+ + CF4 [19] 57 $\rm CF^+ + CF_2 \to CF_2^+ + CF $ [19]
    20 F+ + CF4 → F+ + CF4 [19] 58 F + CF3 → CF4 [19]
    21 F + CF4 → F + CF4 [19] 59 F + CF2 → CF3 [19]
    22 $\rm CF_3^- + CF_4 \to CF_3^- + CF_4 $ [19] 60 F + CF → CF2 [19]
    23 Ar* + CF4 → Ar* + CF4 [19] 61 F2 + CF3 → CF4 + F [19]
    24 CF3 + CF4 → CF3 + CF4 [19] 62 F2 + CF2 → CF3 + F [19]
    25 CF2 + CF4 → CF2 + CF4 [19] 63 $\rm CF_3^- + F\to CF_3 + F^- $ [19]
    26 CF + CF4 → CF + CF4 [19] 64 e + Ar → 2e + Ar+ [20]
    27 F2 + CF4 → F2 + CF4 [19] 65 e + Ar → e + Ar* [20]
    28 F + CF4 → F + CF4 [19] 66 e + Ar* → 2e + Ar+ [20]
    29 Ar + Ar → Ar + Ar [19] 67 Ar* + Ar* → e + Ar + Ar+ [20]
    30 CF4 + CF4 → CF4 + CF4 [19] 68 Ar* + CF2 → Ar + CF + F [21]
    31 Ar + CF4 → Ar + CF4 [19] 69 Ar* + CF3 → Ar + CF2 + F [21]
    32 e + CF4 → e + CF3 + F [19] 70 Ar* + CF4 → Ar + CF2 + F2 [21]
    33 e + CF4 → e + CF2 + 2F [19] 71 Ar+ + CF2 → Ar + CF+ + F [21]
    34 e + CF4 → e + CF + 3F [19] 72 $\rm Ar^+ + CF_3 \to Ar + CF_2^+ + F $ [21]
    35 $\rm e + CF_4 \to 2e + CF_3^+ + F $ [19] 73 $\rm Ar^+ + CF_4 \to Ar + CF_3^+ + F $ [22]
    36 $\rm e + CF_4 \to 2e + CF_2^+ + 2F $ [19] 74 $\rm Ar^+ + CF_3^- \to Ar + CF_3 $ [21]
    37 e + CF4 → 2e + CF+ + 3F [19] 75 Ar+ + F → Ar + F [21]
    38 e + CF4 → 2e + CF3 + F+ [19] 76 $\rm CF_3^+ + Ar\to CF_3 + Ar^+ $ [21]
    DownLoad: CSV
  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp387−457

    [2]

    王友年, 宋远红, 张钰如 2024 射频等离子体物理基础(北京: 科学出版社) 第236页

    Wang Y N, Song Y H, Zhang Y R 2024 Fundamentals of Radio-frequency Plasma Physics (Beijing: Science Press) p236

    [3]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [4]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [5]

    Saikia P, Bhuyan H, Escalona M, Favre M, Rawat R S, Wyndham E 2018 AIP Adv. 8 045113Google Scholar

    [6]

    Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B, Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017Google Scholar

    [7]

    Vahedi V, DiPeso G, Birdsall C K, Lieberman M A, Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261Google Scholar

    [8]

    Wünderlich D, Gutser R, Fantz U 2009 Plasma Sources Sci. Technol. 18 045031Google Scholar

    [9]

    Passchier J D P, Goedheer W J 1993 J. Appl. Phys. 74 3744Google Scholar

    [10]

    Alves L L, Marques L 2012 Plasma Phys. Controlled Fusion 54 124012Google Scholar

    [11]

    Graves D B 1987 J. Appl. Phys. 62 88Google Scholar

    [12]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [13]

    Kushner M J 2007 IEEE Trans. Plasma Sci. 14 188

    [14]

    Yang Y, Kushner M J 2010 Plasma Sources Sci. Technol. 19 055011Google Scholar

    [15]

    Model Low-Temperature Plasma Sources with the Plasma Module https://www.comsol.com/plasma-module [2025-8-16]

    [16]

    Benchmark Model of a Capacitively Coupled Plasma https://www.comsol.com/model/benchmark-model-of-a-capacitively-coupled-plasma-11745 [2025-8-16]

    [17]

    Model of an Argon/Chlorine Inductively Coupled Plasma Reactor with RF Bias https://www.comsol.com/model/model-of-an-argonchlorine-inductively-coupled-plasma-reactor-with-rf-bias-110171 [2025-8-16]

    [18]

    Model of an Argon/Oxygen Capacitively Coupled Plasma Reactor https://www.comsol.com/model/model-of-an-argonoxygen-capacitively-coupled-plasma-reactor-108931 [2025-8-16]

    [19]

    Li J Z, Zhao M L, Zhang Y R, Gao F, Wang Y N 2025 Comput. Phys. Commun. 307 109392Google Scholar

    [20]

    Wen Y Y, Li X Y, Zhang Y R, Song Y H, Wang Y N 2022 J. Phys. D: Appl. Phys. 55 200001Google Scholar

    [21]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. , A 22 511-530Google Scholar

    [22]

    Zhang Y R, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 485204Google Scholar

  • [1] ZHANG Menglong, FANG Chuan, ZHANG Ziming, LI Heping. Modeling of wave-wave and wave-particle interactions in ionospheric plasma under pump wave action. Acta Physica Sinica, 2025, 74(20): 209401. doi: 10.7498/aps.74.20250788
    [2] SHI Hanxu, LI Xinyang, ZHANG Yuru, WANG Younian. Numerical investigation of the secondary electron effect in capacitively coupled plasmas driven by ultra-low frequency/radio frequency sources. Acta Physica Sinica, 2025, 74(13): 135203. doi: 10.7498/aps.74.20250341
    [3] LI Jingyu, JIANG Xingzhao, HE Qian, ZHANG Yifan, WU Tong, JIANG Senzhong, SONG Yuanhong, JIA Wenzhu. Capacitively coupled argon plasmas fluid simulations with deep learning surrogate model: Asymmetric inference and quantitative trust boundaries. Acta Physica Sinica, 2025, 74(23): 235205. doi: 10.7498/aps.74.20251290
    [4] Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes. Acta Physica Sinica, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [5] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [6] Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu. Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field. Acta Physica Sinica, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [7] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [8] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [9] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [10] Hu Yan-Ting, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge. Acta Physica Sinica, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [11] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [12] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [13] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [14] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [15] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [16] Deng Feng, Zhao Zheng-Yu, Shi Run, Zhang Yuan-Nong. Two-dimensional simulation of high-frequency-induced large-scale irregularities in F region. Acta Physica Sinica, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [17] Ouyang Jian-Ming, Shao Fu-Qiu, Lin Ming-Dong. Numerical simulation of ozone generation in oxygenic plasmas. Acta Physica Sinica, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [18] Guo Wen-Qiong, Zhou Xiao-Jun, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [19] Ouyang Jian-Ming, Shao Fu-Qiu, Wang Long, Fang Tong-Zhen, Liu Jian-Quan. Numerical simulation of chemical processes in one-dimensional atmospheric plasmas. Acta Physica Sinica, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [20] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
Metrics
  • Abstract views:  534
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2025
  • Accepted Date:  25 September 2025
  • Available Online:  30 September 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回