搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳电池综述

姚鑫 丁艳丽 张晓丹 赵颖

引用本文:
Citation:

钙钛矿太阳电池综述

姚鑫, 丁艳丽, 张晓丹, 赵颖

A review of the perovskite solar cells

Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying
PDF
导出引用
  • 基于有机-无机杂化钙钛矿材料(CH3NH3PbX3)制备的太阳电池效率自2009年从3.8%增长到19.6%, 因其较高的光吸收系数, 较低的成本及易于制备等优势获得了广泛关注. 钙钛矿材料不仅可以作为光吸收层, 还可用作电子和空穴传输层, 以此制备出不同结构的钙钛矿太阳电池: 介孔结构、介观超结构、平面结构、无HTM层结构和有机结构. 除此之外, 钙钛矿材料制备方法的多样性使其更具吸引力, 目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液-气相沉积法. 本文主要介绍了钙钛矿太阳电池的发展历程、工作原理及钙钛矿薄膜的制备方法等. 详细阐述了电池每一层的具体作用和针对现有的钙钛矿结构各层材料的优化, 最后介绍了钙钛矿太阳电池所面临的问题和发展前景, 以期对钙钛矿太阳电池有进一步的了解, 为制备新型高效的钙钛矿太阳电池打下坚实的基础.
    The efficiency of solar cells based on organic-inorganic hybrid perovskite materials has a rapid growth from 3.8% in 2009 to 19.3%. The perovskite material (CH3NH3PbX3) exhibits advantages of high absorbing coefficient, low cost, and easily synthesised, which achieved extremely rapid development in recent years and gains great concern from the academic circle. As we know, perovskite materials not only serve as light absorption layer, but also can be used as either electron or hole transport layer. Consequently, various structures are designed based on the function of the perovskite, such as the solid-state mesoscopic heterojunction, meso-superstructured planar-heterojunction, HTM-free and the organic structured layers. Besides, it is also attractive for its versatility in fabrication techniques: one-step precursor solution deposition, two-step sequential deposition, dual-source vapor deposition, and vapor-assisted solution processing etc. This review mainly introduces the development and mechanism of the perovskite solar cells performance and the fabrication methods of peroskite films, briefly describes the specific function and improvement of each layer, and finally discusses the challenges we are facing and the development prospects, in order to have a further understanding of perovskite solar cells and lay a solid foundation for the preparation of new structures of the perovskite solar cells.
    • 基金项目: 国家973重点基础研究发展计划项目(批准号: 2011CBA00706, 2011CBA00707)、天津市科技支撑项目(批准号: 12ZCZDGX03600)、天津市重大科技支撑计划项目(批准号: 11TXSYGX22100)、高等学校博士学科点专项科研基金资助课题(批准号: 20120031110039)、科技部863高技术发展计划(批准号: 2013AA050302)和国家自然科学基金(批准号: 61471065)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the Science and Technology Support Program of Tianjin, China (Grant No. 12ZCZDGX03600), the Major Science and Technology Support Project of Tianjin City of China (Grant No. 11TXSYGX22100), the Specialized Research Fund for the PhD Program of Higher Education of China (Grant No. 20120031110039), and the National High Technology Research and Development Program of China (Grant No. 2013AA050302), and the National Natural Science Foundation of China (Grant No. 621474065).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982

    [3]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764

    [4]

    Carmona C R, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddine M K,Bolink H J 2014 Energy Environ. Sci. 7 994

    [5]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2013 ACS Nano 8 591

    [6]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [7]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [8]

    Kim J, Lee S H, Lee J H, Hong K H. 2014 J. Phys. Chem. Lett 5 1312

    [9]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [10]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci.Rep. 2 591

    [11]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [12]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [13]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [14]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H, Wang H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [16]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [17]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [18]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photons 8 506

    [19]

    McKinnon N K, Reeves D C, Akabas M H 2011 JGP 138 453

    [20]

    Koh T M, Fu K, Fang Y, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, Baikie T 2014 J. Phys. Chem. C 118 16458

    [21]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [22]

    Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H 2014 J. Phys. Chem. Lett. 5 2160

    [23]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink1 H J 2014 Nature Photons 8 128

    [24]

    Grätzel, M, N. G. Park 2014 Nano 9 1440002

    [25]

    Kim H-B, Choi H, Jeong J, Kim S, Walker B, Songa S, Kim J Y 2014 Nanoscale 6 6679

    [26]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [27]

    Zhang W H, Cai B 2014 Chin. Sci. Bull. 59 2092

    [28]

    Liu D, Kelly T L 2014 Nature Photon 8 133

    [29]

    Bi D, Moon S J, Häggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A 2013 RSC Adv. 3 18762

    [30]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huanget J 2014 Energy Environ. Sci. 7 2359

    [31]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [32]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A. 2 6305

    [33]

    Ogomi H, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [34]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [35]

    Zhao Y, Zhu K 2014 J. Am. Chem. Soc. 136 12241

    [36]

    Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M G 2013 J. Phys. Chem. Lett. 4 1532

    [37]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S 2013 Nature Photon 7 486

    [38]

    Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758

    [39]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J, Yan F, Regan B C O, Amassian A, Anthopoulos T D 2013 Adv. Mater. 25 1504

    [40]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [41]

    Robert F. 2013 Science 342 794

    [42]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nature Photon. 8 250

    [43]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [44]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater 24 151

    [45]

    Mei, A Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [46]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A. 2 705

    [47]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247

    [48]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat Commun 4 2885

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982

    [3]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764

    [4]

    Carmona C R, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddine M K,Bolink H J 2014 Energy Environ. Sci. 7 994

    [5]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2013 ACS Nano 8 591

    [6]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [7]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [8]

    Kim J, Lee S H, Lee J H, Hong K H. 2014 J. Phys. Chem. Lett 5 1312

    [9]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [10]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci.Rep. 2 591

    [11]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [12]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [13]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [14]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H, Wang H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [16]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [17]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [18]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photons 8 506

    [19]

    McKinnon N K, Reeves D C, Akabas M H 2011 JGP 138 453

    [20]

    Koh T M, Fu K, Fang Y, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, Baikie T 2014 J. Phys. Chem. C 118 16458

    [21]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [22]

    Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H 2014 J. Phys. Chem. Lett. 5 2160

    [23]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink1 H J 2014 Nature Photons 8 128

    [24]

    Grätzel, M, N. G. Park 2014 Nano 9 1440002

    [25]

    Kim H-B, Choi H, Jeong J, Kim S, Walker B, Songa S, Kim J Y 2014 Nanoscale 6 6679

    [26]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [27]

    Zhang W H, Cai B 2014 Chin. Sci. Bull. 59 2092

    [28]

    Liu D, Kelly T L 2014 Nature Photon 8 133

    [29]

    Bi D, Moon S J, Häggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A 2013 RSC Adv. 3 18762

    [30]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huanget J 2014 Energy Environ. Sci. 7 2359

    [31]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [32]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A. 2 6305

    [33]

    Ogomi H, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [34]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [35]

    Zhao Y, Zhu K 2014 J. Am. Chem. Soc. 136 12241

    [36]

    Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M G 2013 J. Phys. Chem. Lett. 4 1532

    [37]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S 2013 Nature Photon 7 486

    [38]

    Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758

    [39]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J, Yan F, Regan B C O, Amassian A, Anthopoulos T D 2013 Adv. Mater. 25 1504

    [40]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [41]

    Robert F. 2013 Science 342 794

    [42]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nature Photon. 8 250

    [43]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [44]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater 24 151

    [45]

    Mei, A Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [46]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A. 2 705

    [47]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247

    [48]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat Commun 4 2885

  • [1] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [2] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [3] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [4] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [5] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [7] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究. 物理学报, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [8] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [9] 李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王岭雪. ZnO电子传输层对于反型结构聚合物太阳电池光浴效应的影响. 物理学报, 2015, 64(8): 088401. doi: 10.7498/aps.64.088401
    [10] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [11] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [12] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [13] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [16] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [17] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [18] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [19] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  18845
  • PDF下载量:  14408
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-17
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-02-05

钙钛矿太阳电池综述

  • 1. 南开大学光电子薄膜器件与技术研究所, 天津 300071
    基金项目: 国家973重点基础研究发展计划项目(批准号: 2011CBA00706, 2011CBA00707)、天津市科技支撑项目(批准号: 12ZCZDGX03600)、天津市重大科技支撑计划项目(批准号: 11TXSYGX22100)、高等学校博士学科点专项科研基金资助课题(批准号: 20120031110039)、科技部863高技术发展计划(批准号: 2013AA050302)和国家自然科学基金(批准号: 61471065)资助的课题.

摘要: 基于有机-无机杂化钙钛矿材料(CH3NH3PbX3)制备的太阳电池效率自2009年从3.8%增长到19.6%, 因其较高的光吸收系数, 较低的成本及易于制备等优势获得了广泛关注. 钙钛矿材料不仅可以作为光吸收层, 还可用作电子和空穴传输层, 以此制备出不同结构的钙钛矿太阳电池: 介孔结构、介观超结构、平面结构、无HTM层结构和有机结构. 除此之外, 钙钛矿材料制备方法的多样性使其更具吸引力, 目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液-气相沉积法. 本文主要介绍了钙钛矿太阳电池的发展历程、工作原理及钙钛矿薄膜的制备方法等. 详细阐述了电池每一层的具体作用和针对现有的钙钛矿结构各层材料的优化, 最后介绍了钙钛矿太阳电池所面临的问题和发展前景, 以期对钙钛矿太阳电池有进一步的了解, 为制备新型高效的钙钛矿太阳电池打下坚实的基础.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回