搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高效热离子功率器件的性能特性研究

廖天军 林比宏 王宇珲

引用本文:
Citation:

新型高效热离子功率器件的性能特性研究

廖天军, 林比宏, 王宇珲

Performance characteristics of a novel high-efficientgraphene thermionic power device

Liao Tian-Jun, Lin Bi-Hong, Wang Yu-Hui
PDF
HTML
导出引用
  • 应用固体物理和不可逆热力学理论, 研究新型高效石墨烯热离子热电功率器件的性能特性. 通过数值求解器件高温和低温端的能量平衡方程, 确定器件阴极板和阳极板的温度; 分析输出电压和阴极板功函数对器件的伏安特性及两个极板温度的影响, 确定器件在最大功率密度和最大效率时的参数特性; 折衷考虑功率密度和效率, 给出参数的优化取值区间; 分析了高温热源温度对优化性能的影响. 本文所得结果可为热离子能量转换器件的研制提供理论指导.
    According to the theories of the solid physics and irreversible thermodynamics, the performance characteristics of a novel high-efficient graphene thermionic power device (TPD) are studied. The temperature of the cathode plate and anode plate are determined by solving the energy balance equation of hot and cold sides of the TPD. The effects of the output voltage and the work function of the cathode on the volt-ampere characteristics of the TPD and the temperature of the two electrodes are analyzed to determine the parametric characteristics of the TPD at the maximum power density and efficiency. The power density and efficiency are compromised, and the parametric optimal designs are given. The influence of the temperature of heat source at high temperature on optimization performance is analyzed. The results obtained here can provide theoretical guidance for developing the thermionic energy conversion devices.
      通信作者: 林比宏, bhlin@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11675132, 11775084)、福建省自然科学基金(批准号: 2016J01021)和重庆理工大学科研启动项目(批准号: 2019ZD22)资助的课题
      Corresponding author: Lin Bi-Hong, bhlin@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675132, 11775084), the Fujian Natural Science Foundation of China (Grant No. 2016J01021), and the Scientific Research Foundation of Chongqing University of Technology of China (Grant No. 2019ZD22)
    [1]

    王长宏, 林涛, 曾志环 2014 物理学报 63 197201Google Scholar

    Wang C H, Lin T, Zeng Z H 2014 Acta Phys. Sin. 63 197201Google Scholar

    [2]

    周敏, 黄荣进, 李来风, 蒋明波, 吴智雄 2010 物理学报 59 7314Google Scholar

    Zhou M, Huang R J, Li L F, Jiang M B, Wu Z X 2010 Acta Phys. Sin. 59 7314Google Scholar

    [3]

    Zeng T 2006 Appl. Phys. Lett. 88 153104Google Scholar

    [4]

    Lee J H, Bargatin I, Melosh N A, Howe R T 2012 Appl. Phys. Lett. 100 173904Google Scholar

    [5]

    Lee J I, Jeong Y H, No H C, Hannebauer R, Yoo S K 2009 Appl. Phys. Lett. 95 223107Google Scholar

    [6]

    Smith J R, Bibro G L, Nemanich R J 2007 Phys. Rev. B 76 245327Google Scholar

    [7]

    Liao T 2019 IEEE Electron Device Lett. 40 115Google Scholar

    [8]

    Meir S, Stephanos C, Geballe T H, Mannhart J 2013 J. Renew. Sustain. Energy 5 043127Google Scholar

    [9]

    Olawole O C, De D K 2018 J. Photon. Energy 8 018001

    [10]

    Post A D, King B V, Kisi E H 2017 Appli. Therm. Eng. 117 245Google Scholar

    [11]

    Xiao L, Wu S Y, Yang S L 2018 Int. J. Energy Res. 42 656Google Scholar

    [12]

    Liao T, Chen X, Lin B, Chen J 2016 Appl. Phys. Lett. 108 033901Google Scholar

    [13]

    Schwede J W, Bargatin I, Riley D C, et al. 2010 Nature Mater. 9 762Google Scholar

    [14]

    Zhang X, Zhang Y, Ye Z, Li W, Liao T, Chen J 2018 IEEE Electron Device Lett. 39 383

    [15]

    Yang Z, Peng W, Li W, Chen X, Chen J 2018 J. Appl. Phys. 124 154501Google Scholar

    [16]

    Liang S, Ang L K 2015 Phys. Rev. Appl. 3 014002Google Scholar

    [17]

    Liang S, Liu B, Hu W, Zhou K, Ang L K 2017 Sci. Rep. 7 46211Google Scholar

    [18]

    Misra S, Upadhyay K M, Mishra S K 2017 J. Appl. Phys. 121 065102Google Scholar

    [19]

    Mishra S K, Kahaly M U, Misra S 2017 Int. J. Therm. Sci. 121 358Google Scholar

    [20]

    廖天军, 杨智敏, 林比宏 2014 中国科学: 物理学 力学 天文学 44 125

    Liao T J, Yang Z M, Lin B H 2014 Sci. Sin.: Phys. Mech. Astron. 44 125

    [21]

    Wang Y, Su S, Lin B, Chen J 2013 J. Appl. Phys. 114 053502Google Scholar

    [22]

    Chen L, Ding Z, Sun F 2010 J. Appl. Phys. 107 104507Google Scholar

    [23]

    Zhang X, Pan Y, Chen J 2017 IEEE Trans. Electron Device 64 4594Google Scholar

    [24]

    Kuznetsov V I, Ender A Y, Babanin V I 2018 J. Appl. Phys. 124 044502Google Scholar

  • 图 1  石墨烯TPD示意图

    Fig. 1.  Schematic diagram of a graphene-based TPD.

    图 2  给定不同${\varPhi _{\rm{C}}}$时, (a)阴极温度和(b)阳极温度随输出电压变化曲线及(c)伏安特性曲线, 其中$\varepsilon = 0.20$, ${E_{\rm{F}}} = 0.80\;\,{\rm{eV}}$, ${U_{\rm{H}}} = {U_{\rm{L}}} = 0.2\,\;{\rm{W}}\cdot{\rm{c}}{{\rm{m}}^{ - {\rm{2}}}}\cdot{{\rm{K}}^{ - {\rm{1}}}}$, ${T_{\rm{H}}} = 1500\,\;{\rm{K}}$${T_{\rm{E}}} = 300\,\;{\rm{K}}$

    Fig. 2.  (a) Curves of the cathode temperature, and (b) the anode temperature varying with the output voltage, and (c) the volt-ampere characteristic for given values of ${\varPhi _{\rm{C}}}$, where $\varepsilon = 0.20$, ${E_{\rm{F}}} = 0.80\,\,{\rm{eV}}$, ${U_{\rm{H}}} = {U_{\rm{L}}} = 0.2\,\,{\rm{W}}\cdot{\rm{c}}{{\rm{m}}^{ - {\rm{2}}}}\cdot{{\rm{K}}^{ - {\rm{1}}}}$, ${T_{\rm{H}}} = 1500\,\,{\rm{K}}$, and ${T_{\rm{E}}} = 300\,{\rm{K}}$.

    图 3  (a) TPD的功率密度和(b)效率随输出电压和阴极板功函数变化的三维图

    Fig. 3.  Three-dimensional graphs of (a) the power density and (b) the efficiency varying with the output voltage and the work function of the cathode.

    图 4  (a) TPD的优化功率密度和阴极功函数, (b)优化效率和阴极功函数随电压变化的曲线以及(c)性能特征曲线${\eta _{{\rm{opt}}}}{\text{-}}{P_{{\rm{opt}}}}$

    Fig. 4.  Curves of (a) the optimal power density and work function, (b) the optimal efficiency and work function varying with the voltage, and (c) the performance characteristic of TPD.

    图 5  (a) ${P_{\max }}$${\eta _{\max }}$, (b) ${V_P}$${V_\eta }$, (c) ${\varPhi _{{\rm{C}},P}}$${\varPhi _{{\rm{C}},\eta }}$${T_{\rm{H}}}$的变化

    Fig. 5.  Curves of (a) ${P_{\max }}$ and ${\eta _{\max }}$, (b) ${V_P}$ and ${V_\eta }$, and (c) ${\varPhi _{{\rm{C}},P}}$ and ${\varPhi _{{\rm{C}},\eta }}$ as a function of ${T_{\rm{H}}}$.

    图 6  ${P_{\max }}$${\eta _{\max }}$${E_{\rm{F}}}$变化的曲线, 其中${T_{\rm{H}}} = 1500\,\,{\rm{K}}$

    Fig. 6.  Curves of ${P_{\max }}$ and ${\eta _{\max }}$ as a function of ${E_{\rm{F}}}$, where ${T_{\rm{H}}} = 1500\,\,{\rm{K}}$.

    表 1  本文和文献[23]在优化性能时重要参数的取值.

    Table 1.  Values of key parameters at the optimum performances for the present work and the Ref. [23].

    ${\eta _{\max }}$${\varPhi _{{\rm{C}},\eta }}$${\varPhi _{{\rm{A}},\eta }}$${V_\eta }$${P_{\max }}$${\varPhi _{{\rm{C}},P}}$${\varPhi _{{\rm{A}},P}}$${V_P}$
    本文0.602.380.591.7945.51.830.791.04
    文献[23]0.303.001.751.250.5753.002.210.794
    下载: 导出CSV
  • [1]

    王长宏, 林涛, 曾志环 2014 物理学报 63 197201Google Scholar

    Wang C H, Lin T, Zeng Z H 2014 Acta Phys. Sin. 63 197201Google Scholar

    [2]

    周敏, 黄荣进, 李来风, 蒋明波, 吴智雄 2010 物理学报 59 7314Google Scholar

    Zhou M, Huang R J, Li L F, Jiang M B, Wu Z X 2010 Acta Phys. Sin. 59 7314Google Scholar

    [3]

    Zeng T 2006 Appl. Phys. Lett. 88 153104Google Scholar

    [4]

    Lee J H, Bargatin I, Melosh N A, Howe R T 2012 Appl. Phys. Lett. 100 173904Google Scholar

    [5]

    Lee J I, Jeong Y H, No H C, Hannebauer R, Yoo S K 2009 Appl. Phys. Lett. 95 223107Google Scholar

    [6]

    Smith J R, Bibro G L, Nemanich R J 2007 Phys. Rev. B 76 245327Google Scholar

    [7]

    Liao T 2019 IEEE Electron Device Lett. 40 115Google Scholar

    [8]

    Meir S, Stephanos C, Geballe T H, Mannhart J 2013 J. Renew. Sustain. Energy 5 043127Google Scholar

    [9]

    Olawole O C, De D K 2018 J. Photon. Energy 8 018001

    [10]

    Post A D, King B V, Kisi E H 2017 Appli. Therm. Eng. 117 245Google Scholar

    [11]

    Xiao L, Wu S Y, Yang S L 2018 Int. J. Energy Res. 42 656Google Scholar

    [12]

    Liao T, Chen X, Lin B, Chen J 2016 Appl. Phys. Lett. 108 033901Google Scholar

    [13]

    Schwede J W, Bargatin I, Riley D C, et al. 2010 Nature Mater. 9 762Google Scholar

    [14]

    Zhang X, Zhang Y, Ye Z, Li W, Liao T, Chen J 2018 IEEE Electron Device Lett. 39 383

    [15]

    Yang Z, Peng W, Li W, Chen X, Chen J 2018 J. Appl. Phys. 124 154501Google Scholar

    [16]

    Liang S, Ang L K 2015 Phys. Rev. Appl. 3 014002Google Scholar

    [17]

    Liang S, Liu B, Hu W, Zhou K, Ang L K 2017 Sci. Rep. 7 46211Google Scholar

    [18]

    Misra S, Upadhyay K M, Mishra S K 2017 J. Appl. Phys. 121 065102Google Scholar

    [19]

    Mishra S K, Kahaly M U, Misra S 2017 Int. J. Therm. Sci. 121 358Google Scholar

    [20]

    廖天军, 杨智敏, 林比宏 2014 中国科学: 物理学 力学 天文学 44 125

    Liao T J, Yang Z M, Lin B H 2014 Sci. Sin.: Phys. Mech. Astron. 44 125

    [21]

    Wang Y, Su S, Lin B, Chen J 2013 J. Appl. Phys. 114 053502Google Scholar

    [22]

    Chen L, Ding Z, Sun F 2010 J. Appl. Phys. 107 104507Google Scholar

    [23]

    Zhang X, Pan Y, Chen J 2017 IEEE Trans. Electron Device 64 4594Google Scholar

    [24]

    Kuznetsov V I, Ender A Y, Babanin V I 2018 J. Appl. Phys. 124 044502Google Scholar

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [5] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [8] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [9] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [10] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [11] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [12] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [13] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [14] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [15] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [17] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [18] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [19] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  7687
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-07-01
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回