-
大气压空气电火花激波等离子体射流的电子密度在亚微秒时间尺度上瞬变, 其电子密度的测定很难. 基于微波瑞利散射原理, 本文测量了空气电火花冲击波流注放电等离子体射流的时变电子密度. 实验结果表明: 测量系统的标定参数A为1.04 × 105 V·Ω·m–2; 空气流注放电等离子体射流的电子密度与等离子体射流的半径和长度有关, 结合高速放电影像展示的等离子体射流的等效半径和等效长度, 测定的电子密度在1020 m–3的量级, 且随时间先快速增长至峰值再成指数衰减. 此外, 本文还探讨了等离子体射流的不同等效尺度对测定结果的影响; 分析结果表明, 采用时变等效半径和时变等效长度的计算结果最有效, 且第1个快速波峰是由光电离的电离波导致的.It is difficult in measuring the electron density of an atmospheric air spark shock wave plasma jet, due to its variation on the time scale of sub-microseconds. In this paper, the time-varying electron density of air spark shock wave plasma jet is measured, based on the principle of microwave Rayleigh scattering. The system constant A is determined by using calibration of materials with known properties; the results show that the system constant is obtained as A = 1.04 × 105 V·Ω·m–2. According to the principle of microwave Rayleigh scattering, the electron density of the plasma jet is related to its radius and length of the plasma jet plume. Combined with the discharge image captured by ICCD camera, it is observed that the plasma jet plumes are with irregular patterns. In order to facilitate the calculation, the plasma jet plumes are replaced by cylinders with the same volume as the original shapes. Thus, the equivalent radius and length of the plasma jet plume are obtained. According to the known data, the electron density is determined to be in the order of 1020 m–3; its value increases rapidly to the peak value, and after then exponential attenuates along with time. In addition, the effect of different equivalent dimensions of the plasma jet plume on the measurement results is also discussed. It is shown that the calculation result with the time-varying equivalent radius and the time-varying equivalent length is the most effective one. In addition, the first fast peak is caused by the ionization wave of the photo ionization. The actual ionization process is that the air discharge in the cathode cavity releases a large number of high energy photons, which pass through the cathode nozzle and project into the region outside the nozzle; and then the O2 molecule in the ambient air are ionized by those high energy photons to form the plasma jet plume at the time of 1 μs.
-
Keywords:
- microwave Rayleigh scattering /
- electron density measurement /
- streamer discharge /
- air plasma jet /
- ionization wave
[1] Akram M, Lundgren E 1996 J. Phys. 29 2129
[2] Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar
[3] Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246
[4] El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar
[5] Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar
[6] Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar
[7] Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1
[8] Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar
[9] Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar
[10] 李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar
Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar
[11] Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar
[12] Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar
[13] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar
[14] Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar
[15] Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar
[16] ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar
[17] Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar
[18] Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar
[19] Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar
[20] Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar
[21] Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar
[22] Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar
[23] Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar
[24] Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar
[25] Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar
[26] 卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar
Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar
[27] 周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar
Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar
[28] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697
[29] 王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar
Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar
[30] Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar
[31] 严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar
Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar
[32] Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar
[33] Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar
[34] Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar
[35] Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar
[36] 吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602
Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602
[37] Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613
[38] Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar
[39] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar
Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar
[40] 卢新培 2011 高电压技术 37 1416
Lu X P 2011 High Voltage Eng. 37 1416
[41] 张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar
Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar
[42] Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar
[43] 李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696
Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696
[44] Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar
[45] Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar
[46] 蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047
Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047
[47] Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar
[48] Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar
[49] 韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar
Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar
[50] 张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110
Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110
-
图 1 大气压空气电火花放电产生的等离子体射流 (a)大气压空气电火花放电装置的结构图; (b) 电火花放电装置照片; (c) 空气电火花激波等离子体射流照片
Fig. 1. Plasma jet generated by atmospheric pressure air spark discharge: (a) Structure diagram of atmospheric pressure air spark discharge device; (b) installation photo of spark discharge device; (c) photo of air spark shock-wave plasma jet.
图 8 不同等效尺度下的等离子体射流的时变电子密度 (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t)
Fig. 8. Time-varying electron density of plasma jet with the different equivalent scales: (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t).
-
[1] Akram M, Lundgren E 1996 J. Phys. 29 2129
[2] Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar
[3] Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246
[4] El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar
[5] Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar
[6] Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar
[7] Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1
[8] Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar
[9] Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar
[10] 李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar
Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar
[11] Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar
[12] Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar
[13] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar
[14] Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar
[15] Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar
[16] ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar
[17] Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar
[18] Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar
[19] Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar
[20] Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar
[21] Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar
[22] Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar
[23] Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar
[24] Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar
[25] Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar
[26] 卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar
Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar
[27] 周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar
Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar
[28] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697
[29] 王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar
Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar
[30] Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar
[31] 严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar
Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar
[32] Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar
[33] Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar
[34] Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar
[35] Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar
[36] 吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602
Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602
[37] Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613
[38] Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar
[39] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar
Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar
[40] 卢新培 2011 高电压技术 37 1416
Lu X P 2011 High Voltage Eng. 37 1416
[41] 张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar
Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar
[42] Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar
[43] 李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696
Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696
[44] Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar
[45] Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar
[46] 蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047
Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047
[47] Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar
[48] Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar
[49] 韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar
Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar
[50] 张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110
Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110
计量
- 文章访问数: 8249
- PDF下载量: 113
- 被引次数: 0