搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度

吴金芳 陈兆权 张明 张煌 张三阳 冯德仁 周郁明

引用本文:
Citation:

微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度

吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明

Measurement of time-varying electron density of air spark shock wave plasma jet by the method of microwave Rayleigh scattering

Wu Jin-Fang, Chen Zhao-Quan, Zhang Ming, Zhang Huang, Zhang San-Yang, Feng De-Ren, Zhou Yu-Ming
PDF
HTML
导出引用
  • 大气压空气电火花激波等离子体射流的电子密度在亚微秒时间尺度上瞬变, 其电子密度的测定很难. 基于微波瑞利散射原理, 本文测量了空气电火花冲击波流注放电等离子体射流的时变电子密度. 实验结果表明: 测量系统的标定参数A为1.04 × 105 V·Ω·m–2; 空气流注放电等离子体射流的电子密度与等离子体射流的半径和长度有关, 结合高速放电影像展示的等离子体射流的等效半径和等效长度, 测定的电子密度在1020 m–3的量级, 且随时间先快速增长至峰值再成指数衰减. 此外, 本文还探讨了等离子体射流的不同等效尺度对测定结果的影响; 分析结果表明, 采用时变等效半径和时变等效长度的计算结果最有效, 且第1个快速波峰是由光电离的电离波导致的.
    It is difficult in measuring the electron density of an atmospheric air spark shock wave plasma jet, due to its variation on the time scale of sub-microseconds. In this paper, the time-varying electron density of air spark shock wave plasma jet is measured, based on the principle of microwave Rayleigh scattering. The system constant A is determined by using calibration of materials with known properties; the results show that the system constant is obtained as A = 1.04 × 105 V·Ω·m–2. According to the principle of microwave Rayleigh scattering, the electron density of the plasma jet is related to its radius and length of the plasma jet plume. Combined with the discharge image captured by ICCD camera, it is observed that the plasma jet plumes are with irregular patterns. In order to facilitate the calculation, the plasma jet plumes are replaced by cylinders with the same volume as the original shapes. Thus, the equivalent radius and length of the plasma jet plume are obtained. According to the known data, the electron density is determined to be in the order of 1020 m–3; its value increases rapidly to the peak value, and after then exponential attenuates along with time. In addition, the effect of different equivalent dimensions of the plasma jet plume on the measurement results is also discussed. It is shown that the calculation result with the time-varying equivalent radius and the time-varying equivalent length is the most effective one. In addition, the first fast peak is caused by the ionization wave of the photo ionization. The actual ionization process is that the air discharge in the cathode cavity releases a large number of high energy photons, which pass through the cathode nozzle and project into the region outside the nozzle; and then the O2 molecule in the ambient air are ionized by those high energy photons to form the plasma jet plume at the time of 1 μs.
      通信作者: 陈兆权, chenzq@ahut.edu.cn
    • 基金项目: 国家级-国家自然科学基金青年科学基金(11575003)
      Corresponding author: Chen Zhao-Quan, chenzq@ahut.edu.cn
    [1]

    Akram M, Lundgren E 1996 J. Phys. 29 2129

    [2]

    Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar

    [3]

    Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246

    [4]

    El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar

    [5]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar

    [6]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [7]

    Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1

    [8]

    Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar

    [9]

    Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar

    [10]

    李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar

    [11]

    Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar

    [12]

    Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar

    [13]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [14]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar

    [15]

    Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar

    [16]

    ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar

    [17]

    Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar

    [18]

    Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar

    [19]

    Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar

    [20]

    Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar

    [21]

    Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar

    [22]

    Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar

    [23]

    Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar

    [24]

    Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar

    [25]

    Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar

    [26]

    卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar

    [27]

    周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar

    [28]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697

    [29]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [30]

    Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar

    [31]

    严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar

    Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar

    [32]

    Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [33]

    Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar

    [34]

    Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar

    [35]

    Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602

    Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602

    [37]

    Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613

    [38]

    Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar

    [39]

    陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar

    Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar

    [40]

    卢新培 2011 高电压技术 37 1416

    Lu X P 2011 High Voltage Eng. 37 1416

    [41]

    张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar

    Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar

    [42]

    Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar

    [43]

    李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696

    Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696

    [44]

    Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar

    [45]

    Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [46]

    蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047

    Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047

    [47]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar

    [48]

    Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar

    [49]

    韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar

    Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar

    [50]

    张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110

    Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110

  • 图 1  大气压空气电火花放电产生的等离子体射流 (a)大气压空气电火花放电装置的结构图; (b) 电火花放电装置照片; (c) 空气电火花激波等离子体射流照片

    Fig. 1.  Plasma jet generated by atmospheric pressure air spark discharge: (a) Structure diagram of atmospheric pressure air spark discharge device; (b) installation photo of spark discharge device; (c) photo of air spark shock-wave plasma jet.

    图 2  火花放电电压波形

    Fig. 2.  Spark discharge voltage waveform.

    图 3  微波瑞利散射装置 (a)实验系统图; (b)实验装置照片

    Fig. 3.  Microwave Rayleigh scattering device: (a) Experimental schematic diagram; (b) photo of experimental device.

    图 4  微波瑞利散射装置的系统参数标定

    Fig. 4.  Calibration on a constant of microwave Rayleigh scattering device.

    图 5  微波瑞利散射装置测定的散射信号

    Fig. 5.  Scattering signal measured by microwave Rayleigh scattering device.

    图 6  空气等离子体射流的光学影像

    Fig. 6.  Optical images of air plasma jet.

    图 7  空气等离子体激波射流的半径r(t)和长度l(t)

    Fig. 7.  The radius r(t) and length l(t) of air plasma shock-wave jet.

    图 8  不同等效尺度下的等离子体射流的时变电子密度 (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t)

    Fig. 8.  Time-varying electron density of plasma jet with the different equivalent scales: (a) r = 1.2 mm, l = 10 mm; (b) r = 1.2 mm, l = l(t); (c) r = r(t), l = 10 mm; (d) r = r(t), l = l(t).

  • [1]

    Akram M, Lundgren E 1996 J. Phys. 29 2129

    [2]

    Lu X P, Laroussi M, Puech V 2012 Plasma Sources Sci. Technol. 21 034005Google Scholar

    [3]

    Janda M, Machala Z 2011 IEEE Trans. Plasma Sci. 39 2246

    [4]

    El-Koramy R A, Effendiev A Z, Aliverdiev A A 2007 Phys B 392 304Google Scholar

    [5]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar

    [6]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [7]

    Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 63 1

    [8]

    Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123Google Scholar

    [9]

    Abdellatif G, Imam H 2002 Spectrochim. Acta B 57 1155Google Scholar

    [10]

    李驰, 唐晓亮, 邱高 2008 光谱学与光谱分析 28 2754Google Scholar

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spect. Anal. 28 2754Google Scholar

    [11]

    Pakhal H R, Lucht R P, Laurendeau N M 2008 Appl. Phys. B 90 15Google Scholar

    [12]

    Yambea K, Saito H, Ogura K 2015 IEEJTrans. Electr. Electron. Eng. 10 614Google Scholar

    [13]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [14]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206Google Scholar

    [15]

    Shneider M N, Miles R B 2005 J. Appl. Phys. 98 033301Google Scholar

    [16]

    ShashurinA, Shneider M N, Dogariu A, Miles R B, Keidar M 2010 Appl. Phys. Lett. 96 171501Google Scholar

    [17]

    Shashurin A, Shneider M N, Dogariu A, Miles R B, Keidar M 2009 Appl. Phys. Lett. 94 231504Google Scholar

    [18]

    Lu X P, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng. R. 138 36Google Scholar

    [19]

    Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O, Kudryavtsev A A 2018 Chin. Phys. B 27 055202Google Scholar

    [20]

    Chen Z Q, Liu X D, Zou C L, Song X, Li P, Hu Y L, Qiu H B, Kudryavtsev A A, Zhu M Z 2017 J. Appl. Phys. 121 023302Google Scholar

    [21]

    Chen Z Q, Xia G Q, Zou C L, Liu X D, Feng D R, Li P, Hu Y L, Stepanova O, Kudryavtsev A A 2017 J. Appl. Phys. 122 093301Google Scholar

    [22]

    Chen Z Q, Yin Z X, Chen M G, Hong L L, Xia G Q, Hu Y L, Huang Y R, Liu M H, Kudryavtsev A A 2014 J. Appl. Phys. 116 153303Google Scholar

    [23]

    Chen Z Q, Zhou Q Y, Xia G Q, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R, Liu M H 2012 Rev. Sci. Instrum. 83 084701Google Scholar

    [24]

    Barni R, Biganzoil I, Tassetti D, Riccardi C 2014 Plasma Chem. Plasma Process. 34 1415Google Scholar

    [25]

    Chen Z Q, Xia G Q, Li P, Hong L L, Hu Y L, Zheng X L, Wang Y, Huang Y R, Zhu L J, Liu M H 2013 IEEE Trans. PlasmaSci. 41 1658Google Scholar

    [26]

    卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学~力学~天文学 41 801Google Scholar

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China-Phys. Mech. Astron. 41 801Google Scholar

    [27]

    周前红, 董志伟, 陈京元 2011 物理学报 60 125202Google Scholar

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202Google Scholar

    [28]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697

    [29]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [30]

    Bárdos L, Baránková H 2010 Thin Solid Films 518 6705Google Scholar

    [31]

    严建华, 屠昕, 马增益, 潘新潮, 岑可法 2006 物理学报 55 3451Google Scholar

    Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno 2006 Acta Phys. Sin. 55 3451Google Scholar

    [32]

    Lu X P, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [33]

    Xia G Q, Chen Z Q, Yin Z X, Hao J K, Xu Z Q, Xue C G, Hu D, Zhou M R, Hu Y L, Kudryavtsev A A 2015 IEEE Trans. PlasmaSci. 43 1825Google Scholar

    [34]

    Xia G Q, Chen Z Q, Saifutdinov A I, Eliseev S, Hu Y L, Kudryavtsev A A 2014 IEEE Trans. PlasmaSci. 42 2768Google Scholar

    [35]

    Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P, Kolb J F 2013 Plasma Process. Polym. 10 372Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602

    Wu S Q, Nie L L, Lu X P 2015 High Voltage Eng. 41 2602

    [37]

    Dobrynin D, Fridman A, Starikovskiy A Y 2012 IEEE Trans. Plasma Sci. 40 2613

    [38]

    Wu S Q, Lu X P, Liu D, Yang Y, Pan Y, Ostrikov K 2014 Phys. Plasmas 21 103508Google Scholar

    [39]

    陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟 2013 物理学报 62 195204Google Scholar

    Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Shen H Y, Hu X W 2013 Acta Phys. Sin. 62 195204Google Scholar

    [40]

    卢新培 2011 高电压技术 37 1416

    Lu X P 2011 High Voltage Eng. 37 1416

    [41]

    张宏超, 陆建, 倪晓武 2008 物理学报 58 4034Google Scholar

    Zhang H C, Lu J, Ni X W 2008 Acta Phys. Sin. 58 4034Google Scholar

    [42]

    Chen Z Q, Zhang H, Wu J F, Tu Y L, Zhang M, Wu C Y, Liu S C, Zhou Y M 2019 IEEE Trans. Plasma Sci. 47 4787Google Scholar

    [43]

    李雪辰, 张盼盼, 李霁媛, 张琦, 鲍文婷 2017 光谱学与光谱分析 37 1696

    Li X C, Zhang P P, Li J Y, Zhang Q, Bao W T 2017 Spectrosc. Spect. Anal. 37 1696

    [44]

    Xiong Z M, Kushner M J 2012 Plasma Sources Sci. Technol. 21 034001Google Scholar

    [45]

    Brian L S, Biswa N G, Kunihide T 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [46]

    蔡新景, 王新新, 邹晓兵, 孙悦, 鲁志伟 2015 高电压技术 41 2047

    Cai X J, Wang X X, Zou X B, Sun Y, Lu Z W 2015 High Voltage Eng. 41 2047

    [47]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D: Appl. Phys. 43 505201Google Scholar

    [48]

    Nijdam S, Wetering van de F M J H, Blanc R, Veldhuizen van E M, Ebert U 2010 J. Phys. D: Appl. Phys. 43 145204Google Scholar

    [49]

    韩波, 王菲鹿, 梁贵云, 赵刚 2016 物理学报 65 110503Google Scholar

    Han B, Wang F L, Liang G Y, Zhao G 2016 Acta Phys. Sin. 65 110503Google Scholar

    [50]

    张赟, 曾嵘, 杨学昌, 张波, 何金良 2009 中国电机工程学报 29 0110

    Zhang Y, Zeng R, Yang X C, Zhang B, He J L 2009 Proc. Chin. Soc. Elect. Eng. 29 0110

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] 陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰. 利用质子能损诊断部分电离等离子体靶中的束缚电子密度. 物理学报, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [3] 周鑫淼, 张博雅, 陈立, 李兴文. 金属微粒影响三电极气体火花开关击穿过程的仿真研究. 物理学报, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [4] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [5] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化. 物理学报, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [6] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [7] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [8] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [9] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [10] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [11] 任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 相干瑞利散射海水水下温度测量技术的理论研究. 物理学报, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [12] 赵高, 熊玉卿, 马超, 刘忠伟, 陈强. 短管螺旋波放电中等离子体参数测量和模式转化研究. 物理学报, 2014, 63(23): 235202. doi: 10.7498/aps.63.235202
    [13] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [14] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [15] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [16] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度. 物理学报, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [17] 寿 倩, 张海潮, 邓 莉, 刘叶新, 林位株. 四波混频与瑞利散射场的干涉现象. 物理学报, 2003, 52(4): 1019-1022. doi: 10.7498/aps.52.1019
    [18] 王琛, 顾援, 傅思祖, 周关林, 吴江, 王伟, 孙玉琴, 董佳钦, 孙今人, 王瑞荣, 倪元龙, 万炳根, 黄关龙, 张国平, 林尊琪, 王世绩. 软X射线激光偏折法测量激光等离子体电子密度分布. 物理学报, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [19] 王龙, 罗耀全, 李赞良, 王文书, 杨思泽, 李文莱, 戚霞枝, 赵华. 托卡马克微波预电离等离子体. 物理学报, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
    [20] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
计量
  • 文章访问数:  8643
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-01-23
  • 刊出日期:  2020-04-05

/

返回文章
返回