搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆铌合金的特殊准随机结构模型的分子动力学研究

周明锦 侯氢 潘荣剑 吴璐 付宝勤

引用本文:
Citation:

锆铌合金的特殊准随机结构模型的分子动力学研究

周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤

Molecular dynamics study of special quasirandom structure of Zr-Nb alloys

Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin
PDF
HTML
导出引用
  • 锆合金(如: 锆铌(Zr-Nb)合金)的辐照损伤问题是裂变堆结构材料和燃料棒包壳材料设计的关键, 而深入理解辐照损伤的物理机制, 往往需借助于原子尺度的计算模拟, 如: 分子动力学和第一性原理等. 针对随机置换固溶体合金的模拟, 首先需构建能反映合金元素随机分布特征的大尺寸超胞, 然而第一性原理计算量大, 不宜使用过大(如 ≥ 200原子)超胞. 通常第一性原理计算使用的是特殊准随机(SQS)超胞, SQS超胞可部分反映合金元素的随机分布特性, 但对于特定组分只对应一种构型, 这种模型是否能反映真实随机置换固溶体中多种局域构型的统计平均还有待进一步研究验证. 分子动力学可在更大的尺度上进行计算模拟, 能够通过随机取代(RSS)模型研究更多的合金构型, 因此, 本文基于RSS超胞模型及SQS扩展超胞模型, 运用分子动力学方法对Zr-Nb合金进行了研究. 首先通过构型误差分析确定了能真实反映固溶体合金性能统计性的RSS超胞的临界尺寸; 然后计算比较了Zr-Nb合金SQS扩展超胞和一系列RSS超胞的晶格常数、形成能和能量-体积关系. 研究表明, 利用SQS超胞模拟得到的固溶体的晶格常数、形成能和能量体积曲线与一系列RSS超胞的对应统计值接近, 因而SQS超胞可用于研究随机置换固溶体合金.
    Irradiation damage to zirconium alloys (e.g., zirconium niobium (Zr-Nb) alloy) is the key to the design of fission-reactor structural materials and fuel rod cladding materials. Atomic scale computational simulations such as molecular dynamics and first principles are often needed to understand the physical mechanism of irradiation damage. For the simulation of randomly substitutional solid solution, it is necessary to construct large-sized supercells that can reflect the random distribution characteristics of alloy elements. However, it is not suitable to use large-size supercells (such as ≥ 200 atoms) for first principle calculation, due to the large computational cost. Special quasirandom supercells (SQS) are usually used for first principles calculation. The SQS can partly reflect the random distribution characteristics of alloy elements, but it only corresponds to one configuration for specific components, hence whether this model can reflect the statistical average of multiple local configurations in a real randomly substitutional solid solution is still an open question, and needs further studying and verifying. Molecular dynamics (MD) simulation can be carried out on the randomly substitutional solid solution with a larger scale based on random substitution (RSS) method, these supercells include more local configurations. Therefore, the MD studies of Zr-Nb alloy are carried out for the RSS and SQS-extended supercells. The critical size of RSS supercell which can truly reflect the statistical properties of solid solution alloy is determined. Then the lattice constant, formation energy and energy-volume relationship of SQS-extended supercell of Zr-Nb alloy and a series of RSS supercells are calculated and compared. The results show that the lattice constants, the formation energy and energy volume curves of the solid solution obtained by SQS supercell simulation are close to a series of corresponding statistical values of the physical properties of RSS supercells, so the SQS supercells can be used to study the random substitution of solid solution alloys.
      通信作者: 付宝勤, bqfu@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51501119)和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Fu Bao-Qin, bqfu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501119) and the Fundamental Research Funds for the Central Universities
    [1]

    Silva C, Leonard K, Trammel M, Bryan C 2018 Mater. Sci. Eng., A 716 296Google Scholar

    [2]

    Smirnova D E, Starikov S V 2017 Comput. Mater. Sci. 129 259Google Scholar

    [3]

    Kharchenko V O, Kharchenko D O 2013 Condens. Matter Phys. 16 13801Google Scholar

    [4]

    Sabol G P, Moan G D 2000 Zirconium in the Nuclear Industry: 12th International Symposium (West Conshohocken, PA: ASTM) p505

    [5]

    Bradley E R, Sabol G P 1996 Zirconium in the Nuclear Industry: 11th International Symposium (West Conshohocken, PA: ASTM) p710

    [6]

    Novikov V V, Markelov V A, Tselishchev A V, Konkov V F, Sinelnikov L P, Panchenko V L 2006 J. Nucl. Sci. Technol. 43 991Google Scholar

    [7]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864Google Scholar

    [8]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [9]

    Wei S H, Ferreira L G, Bernard J E, Zunger A 1990 Phys. Rev. B 42 9622Google Scholar

    [10]

    Jiang C, Wolverton C, Sofo J, Chen L Q, Liu Z K 2004 Phys. Rev. B 69 214202Google Scholar

    [11]

    Shin D, Arróyave R, Liu Z K, van de Walle A 2006 Phys. Rev. B 74 024204Google Scholar

    [12]

    Hu Y L, Bai L H, Tong Y G, Deng D Y, Liang X B, Zhang J, Li Y J, Chen Y X 2020 J. Alloys Compd. 827 153963Google Scholar

    [13]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [14]

    Wadley H N G, Zhou X, Johnson R A, Neurock M 2001 Prog. Mater. Sci. 46 329Google Scholar

    [15]

    Zhou X W, Wadley H N G, Filhol J S, Neurock M N 2004 Phys. Rev. B 69 14413Google Scholar

    [16]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [17]

    Lin D Y, Wang S S, Peng D L, Li M, Hui X D 2013 J. Phys. Condens. Matter 25 209501Google Scholar

    [18]

    Lide D R 2009 CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Boca Raton, FL: CRC Press) p1

    [19]

    Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091Google Scholar

    [20]

    Jacob K T, Raj S, Rannesh L 2007 J. Mater. Res. 98 776Google Scholar

    [21]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [22]

    Benites G M, Fernández Guillermet A, Cuello G J, Campo J 2000 J. Alloys Compd. 299 183Google Scholar

    [23]

    Grad G B, Pieres J J, Guillermet A F, Cuello G J, Granada J R, Mayer R E 1995 Physica B 213-214 433Google Scholar

    [24]

    Lichter B D 1960 Trans. Met. Soc. AIME 218 1015

    [25]

    Barannikova S A, Zharmukhambetova A M, Nikonov A Y, Dmitriev A V, Ponomareva A V, Abrikosov I A 2015 IOP Conf. Ser.: Mater. Sci. Eng. 71 012078Google Scholar

    [26]

    Okamoto H 1992 J. Phase Equilib. 13 577Google Scholar

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963Google Scholar

  • 图 1  $ {A}_{x}{B}_{1-x} $随机置换固溶体SQS模型超胞 (a) x = 0.5, SQS-16, bcc晶格; (b) x = 0.25或x = 0.75, SQS-16, bcc晶格; (c) x = 0.5, SQS-8, hcp晶格; (d) x = 0.25或x = 0.75, SQS-16, hcp晶格

    Fig. 1.  Supercells of the $ {A}_{x}{B}_{1-x} $ random solid solution: (a) x = 0.5, SQS-16, bcc lattice; (b) x = 0.25 or x = 0.75, SQS-16, bcc lattice; (c) x = 0.5, SQS-8, hcp lattice; (d) x = 0.25 or x = 0.75, SQS-16, hcp lattice.

    图 2  不同超胞尺寸的bcc和hcp结构Zr-Nb合金的构型误差(形成能的相对误差)

    Fig. 2.  Configuration Errors of Zr-Nb alloy with bcc and hcp structure in different supercell sizes (relative errors of formation energy).

    图 3  bcc结构Zr-60%Nb合金能量与晶格常数的关系

    Fig. 3.  Relationship between solid solution energy and lattice constant of Zr-60%Nb alloy in bcc lattice.

    图 4  由SQS和RSS模型得到的合金晶格常数与Nb浓度的关系 (a) bcc晶格; (b) hcp晶格; (a)中实验值取自文献[22, 23], ADP势函数计算的晶格常数取自Smirnova和Starikov[2]

    Fig. 4.  Relationships between the alloy lattice constant and Nb concentration obtained from SQS and RSS models: (a) The bcc lattice; (b) the hcp lattice. In Fig. 4(a), the experimental values were obtained from literatures[22,23], and the lattice constant calculated from the ADP potential function was taken from Smirnova and Starikov[2].

    图 5  SQS模型与RSS模型计算的Zr-Nb合金的总形成能 (a) bcc晶格; (b) hcp晶格

    Fig. 5.  Total formation energies of Zr-Nb alloy calculated from the RSS and SQS structures: (a) The bcc lattice; (b) the hcp lattice.

    图 6  bcc晶格RSS超胞和SQS超胞的E-V曲线, 以及ADP势的计算结果, 其中, 多边形和圆形图标为对应的SQS和RSS模型的能量计算值, 对应的曲线是用EOS方程[27]拟合得到的E-V曲线; 单点划线、双点划线和短划线是Smirnova和Starikov[2]得到的ADP势模拟结果

    Fig. 6.  Energy-volume curves of RSS and SQS supercells in bcc lattice, and the calculation results of ADP potential. The polygon and circular icons are the energy calculation values of the corresponding SQS and RSS structure, and the corresponding curves are the E-V curves obtained by fitting EOS equation[27]. Single dotted line, double dotted line and short dotted line are the calculated results of ADP potential obtained by Smirnova and Starikov[2].

    图 7  hcp晶格SQS超胞和RSS超胞的Zr-25%Nb合金E-V曲线, 以及ADP势的计算结果[2]

    Fig. 7.  E-V curves of Zr-25%Nb alloy obtained by SQS supercells and RSS supercells in hcp lattice, and the calculation results of ADP potential[2].

    表 1  由EOS方程拟合得到的Zr-Nb合金性质(带“*”的为文献[17]的拟合结果; 第一行对应RSS超胞, 第二行对应SQS超胞)

    Table 1.  Properties of Zr-Nb alloy obtained by fitting EOS equation, and the “ * ” is the fitting result of literature[17]. The first line corresponds RSS structure, and the second line corresponds SQS structure.

    AlloyacEc/(eV·atom–1)B0/GPa
    Zr0.75Nb0.25(bcc)3.5276.45096
    3.5316.447100
    Zr0.75Nb0.25(hcp)3.2005.0976.468144
    3.2025.1006.477142
    *L12-Zr3Nb4.496.45107
    Zr0.5Nb0.5(bcc)3.4426.745118
    3.4416.744117
    *B2-ZrNb3.486.69116
    Zr0.25Nb0.75(bcc)3.3667.127153
    3.3677.124156
    *L12-ZrNb34.346.96100
    下载: 导出CSV
  • [1]

    Silva C, Leonard K, Trammel M, Bryan C 2018 Mater. Sci. Eng., A 716 296Google Scholar

    [2]

    Smirnova D E, Starikov S V 2017 Comput. Mater. Sci. 129 259Google Scholar

    [3]

    Kharchenko V O, Kharchenko D O 2013 Condens. Matter Phys. 16 13801Google Scholar

    [4]

    Sabol G P, Moan G D 2000 Zirconium in the Nuclear Industry: 12th International Symposium (West Conshohocken, PA: ASTM) p505

    [5]

    Bradley E R, Sabol G P 1996 Zirconium in the Nuclear Industry: 11th International Symposium (West Conshohocken, PA: ASTM) p710

    [6]

    Novikov V V, Markelov V A, Tselishchev A V, Konkov V F, Sinelnikov L P, Panchenko V L 2006 J. Nucl. Sci. Technol. 43 991Google Scholar

    [7]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864Google Scholar

    [8]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [9]

    Wei S H, Ferreira L G, Bernard J E, Zunger A 1990 Phys. Rev. B 42 9622Google Scholar

    [10]

    Jiang C, Wolverton C, Sofo J, Chen L Q, Liu Z K 2004 Phys. Rev. B 69 214202Google Scholar

    [11]

    Shin D, Arróyave R, Liu Z K, van de Walle A 2006 Phys. Rev. B 74 024204Google Scholar

    [12]

    Hu Y L, Bai L H, Tong Y G, Deng D Y, Liang X B, Zhang J, Li Y J, Chen Y X 2020 J. Alloys Compd. 827 153963Google Scholar

    [13]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [14]

    Wadley H N G, Zhou X, Johnson R A, Neurock M 2001 Prog. Mater. Sci. 46 329Google Scholar

    [15]

    Zhou X W, Wadley H N G, Filhol J S, Neurock M N 2004 Phys. Rev. B 69 14413Google Scholar

    [16]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [17]

    Lin D Y, Wang S S, Peng D L, Li M, Hui X D 2013 J. Phys. Condens. Matter 25 209501Google Scholar

    [18]

    Lide D R 2009 CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Boca Raton, FL: CRC Press) p1

    [19]

    Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091Google Scholar

    [20]

    Jacob K T, Raj S, Rannesh L 2007 J. Mater. Res. 98 776Google Scholar

    [21]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [22]

    Benites G M, Fernández Guillermet A, Cuello G J, Campo J 2000 J. Alloys Compd. 299 183Google Scholar

    [23]

    Grad G B, Pieres J J, Guillermet A F, Cuello G J, Granada J R, Mayer R E 1995 Physica B 213-214 433Google Scholar

    [24]

    Lichter B D 1960 Trans. Met. Soc. AIME 218 1015

    [25]

    Barannikova S A, Zharmukhambetova A M, Nikonov A Y, Dmitriev A V, Ponomareva A V, Abrikosov I A 2015 IOP Conf. Ser.: Mater. Sci. Eng. 71 012078Google Scholar

    [26]

    Okamoto H 1992 J. Phase Equilib. 13 577Google Scholar

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平. Pd-Si非晶合金动力学非均匀性的对称与有序. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [3] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [4] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [5] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [6] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [7] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [8] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [9] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [10] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [11] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [12] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [13] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [14] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [15] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [18] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  10568
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-09-24
  • 上网日期:  2021-01-26
  • 刊出日期:  2021-02-05

/

返回文章
返回