搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非铅卤素钙钛矿及其阻变性能研究进展

曾凡菊 谭永前 唐孝生 张小梅 尹海峰

引用本文:
Citation:

非铅卤素钙钛矿及其阻变性能研究进展

曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰

Progress of lead-free perovskite and its resistance switching performance

Zeng Fan-Ju, Tan Yong-Qian, Tang Xiao-Sheng, Zhang Xiao-Mei, Yin Hai-Feng
PDF
HTML
导出引用
  • 近年来, 铅基卤素钙钛矿因其制备工艺简单、载流子扩散距离长以及离子迁移速率快等优点而被应用于阻变存储器. 然而, 铅基卤素钙钛矿结构中的铅对人类健康与环境保护存在威胁, 限制了铅基卤素钙钛矿在数据存储领域的实际应用. 研究者们针对铅基钙钛矿铅毒性的问题展开了一系列研究. 其中, 非铅卤素钙钛矿因不含铅而被认为是最有前景的下一代新型阻变存储介质材料. 最近几年, 锡基、铋基、锑基和铜基等非铅卤素钙钛矿被引入阻变存储器领域. 本文系统地综述了非铅卤素钙钛矿材料及其阻变性能, 归纳了非铅卤素钙钛矿的阻变性能及其阻变机理, 指出了非铅卤素钙钛矿材料应用于阻变存储器存在的关键问题, 为进一步研究非铅钙钛矿阻存储器提供了参考.
    With the rapid development of the information age, the demand for information storage capacity and miniaturization of memory units has been being increased. However, the commonly used silicon-based flash memory has nearly approached to its physical limit. The resistive switching random access memory (ReRAM) has become one of the promising candidates for the next-generation non-volatile memory due to its simple structure, fast operation speed, excellent flexibility, and long endurance. Recently, we witnessed that the lead halide perovskites, as hot star materials, have been widely used in optoelectronic fields owning to their advantages of low cost, excellent photoelectric properties, and solution process ability. Moreover, the lead halide perovskite has been successfully used as the active layer in ReRAM device because of its tunable bandgap, long charge carrier diffusion length, fast ion migration, and high charge carrier mobility. Whereas the toxicity of lead in halide perovskite is a very horrible problem in lead halide perovskite-based ReRAM devices. The lead-free halide perovskite is considered to be the most promising material for perovskite-based ReRAM devices because it does not contain lead element. Most recently, a large number of scientists from different groups have begun to study lead-free perovskite-based ReRAM devices. For example, tin, bismuth, antimony, and copper-based halide perovskite materials have been utilized in ReRAM devices and exhibited excellent resistance switching (RS) performances. Here in this paper, the recent development of lead-free perovskite and its RS performance are reviewed, including lead-free halide perovskite materials, RS performances, and RS mechanisms of lead-free perovskite-based ReRAM. Finally, the key problems and development prospects of lead-free perovskite-based ReRAM are also presented, which provides a fundamental step towards developing the RS performance based on lead-free halide perovskites.
      通信作者: 曾凡菊, zengfanju@cqu.edu.cn ; 唐孝生, xstang@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975023, 61875211, 51602033, 61520106012)、凯里学院博士专项课题(批准号: BS202004, BS201301)、凯里学院学术新苗培养及创新探索专项课题(批准号: 黔科合平台人才[2019]01-4)和贵州省教育厅创新群体重大研究项目(批准号: 黔教合KY字[2018]035)资助的课题
      Corresponding author: Zeng Fan-Ju, zengfanju@cqu.edu.cn ; Tang Xiao-Sheng, xstang@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975023, 61875211, 51602033, 61520106012), the Doctoral Project of Kaili University, China (Grant Nos. BS202004, BS201301), the Academic New Seedling Cultivation and Innovation Exploration Special Project of Kaili University, China (Grant No. Qian Ke He Ping Tai Ren Cai [2019]01-4), and the Major Research Projects of Innovative Groups in Education Department of Guizhou Province of China (Grant No. Qian Jiao He KY[2018]035)
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar

    [2]

    Choi S, Shin J H, Lee J, Sheridan P, Lu W. D 2017 Nano Lett. 17 3113Google Scholar

    [3]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [4]

    Mao D, Mejia I, Salas-Villasenor A L, Singh M, Stiegler H, Gnade B E, Quevedo-Lopez M A 2013 Org. Electron. 14 505Google Scholar

    [5]

    Jinnai B, Zhang C, Kurenkov A, Bersweiler M, Sato H, Fukami S, Ohno H 2017 Appl. Phys. Lett. 111 102402Google Scholar

    [6]

    Zhou J, Ji H K, Lan T, Yan J W, Zhou W L, Miao X S. 2016 J. Electron. Mater. 44 235Google Scholar

    [7]

    Chen Y Q, Liu X, Liu Y, Peng C, Fang W X, En Y F, Huang Y 2017 Appl. Phys. Lett. 111 232104Google Scholar

    [8]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mat. Sci. Eng. R. 83 1Google Scholar

    [9]

    Lanza M, Wong H S P, Pop E, et al. 2019 Adv. Electron. Mater. 5 1800143Google Scholar

    [10]

    Jang J, Choi H H, Paik S H, Kim J K, Chung S, Park J H 2018 Adv. Electron. Mater. 4 1800355Google Scholar

    [11]

    Duan W, Rao C, Wang X, Pei Y Mater. 2018 Res. Express 6 016413Google Scholar

    [12]

    Lee M J, Lee C B, Lee D, et al. 2011 Nat. Mater. 10 625Google Scholar

    [13]

    Yang J J, Pickett M D, Li X, Ohlber g D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429Google Scholar

    [14]

    Ng W H, Mehonic A, Buckwell M, Montesi L, Kenyon A J 2018 IEEE Trans. Nanotechnol. 17 884Google Scholar

    [15]

    Song Y, Jang J, Yoo D, Jung S H, Hong S, Lee J K, Lee T 2015 Org. Electron. 17 192Google Scholar

    [16]

    Busby Y, Crespo-Monteiro N, Girleanu M, Brinkmann M, Ersen O, Pireaux J J 2015 Org. Electron. 16 40Google Scholar

    [17]

    You Y, Yang K, Yuan S, Dong S, Zhang H, Huang Q, Gillin W P, Zhan Y, Zheng L 2014 Org. Electron. 15 1983Google Scholar

    [18]

    Suga T, Sakata M, Aoki K, Nishide H 2014 ACS Macro Lett. 3 703Google Scholar

    [19]

    Lee H S, Kang K M, Han W J, Lee T W, Park C S, Choi Y J, Park H H 2014 Appl. Mech. Mater. 597 184Google Scholar

    [20]

    Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar

    [21]

    Li S, Zeng H Z, Zhang S Y, Wei X H 2013 Appl. Phys. Lett. 102 153506Google Scholar

    [22]

    Cui Y, Peng H, Wu S, Wang R, Wu T 2013 ACS Appl. Mater. Inter. 5 1213Google Scholar

    [23]

    Ielmini D 2016 Semicond. Sci. Technol. 6 063002Google Scholar

    [24]

    Liu X, Ji Z, Liu M, Shang L, Li D, Dai Y 2011 Chin. Sci. Bull. 56 3178Google Scholar

    [25]

    Panda D, Tseng T Y 2014 Ferroelectrics 471 23Google Scholar

    [26]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [27]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [28]

    Eames C, Frost J M, Barnes P R, O'Regan B C 2015 Nat. Commun. 6 7497Google Scholar

    [29]

    Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F 2015 Nat. Commun. 6 7124Google Scholar

    [30]

    Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S 2015 Science 347 519Google Scholar

    [31]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [32]

    Chin X Y, Perumal A, Bruno A, et al. 2018 Energ. Environ. Sci. 11 1770Google Scholar

    [33]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [34]

    Choi E S, Yang J M, Kim S G, Cuhadar C, Kim S Y, Kim S H, Lee D, Park N G 2019 Nanoscale 11 14455Google Scholar

    [35]

    Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H, Kim H J 2017 Adv. Mater. Interfaces 4 1601035Google Scholar

    [36]

    Kim S G, Van Le Q, Han J S, et al. 2019 Adv. Funct. Mater. 29 1906686Google Scholar

    [37]

    Kim S Y, Yang J M, Choi E S, Park N G 2019 Nanoscale 11 14330Google Scholar

    [38]

    Zhu Y Y, Cheng P W, Shi J, Wang H J, Liu Y, Xiong R, Ma H Y, Ma HX 2019 Adv. Electron. Mater. 2 1900754Google Scholar

    [39]

    Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar

    [40]

    Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv. Mater. 30 1704002Google Scholar

    [41]

    Kim H, Han J S, Kim G, Kim S Y, Jang H W 2019 J. Mater. Chem. C 7 5226Google Scholar

    [42]

    Xiao X Y, Hu J, Tang S, Yan K, Gao B, Chen H L, Zou C 2020 Adv. Mater. Technol. 5 1900914Google Scholar

    [43]

    Jeong D N, Yang J M, Park N G 2020 Nanotechnology 31 152001Google Scholar

    [44]

    Li B X, Hui W, Ran X Q, Xia D, Xia F, Chao L F, Chen Y H, Huang W 2019 J. Mater. Chem. C 7 7476Google Scholar

    [45]

    Mohd Yusoff A R B, Gao P, Nazeeruddin M K 2018 Coord. Chem. Rev. 373 258Google Scholar

    [46]

    Schroeder H, Balassa J J 1961 J. Chronic Dis. 14 408Google Scholar

    [47]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [48]

    Wang H J, Lin J Q, Zhu Y Y, Zeng X, Wei H, Cheng P W, Lu H B, Liu Y, Xiong R 2020 Adv. Electron. Mater. 11 202000799Google Scholar

    [49]

    Han J S, Le Q V, Choi J, Kim H, Kim S G, Hong K, Moon C W, Kim T L, Kim S Y, Jang H W 2019 ACS Appl. Mater. Inter. 11 8155Google Scholar

    [50]

    Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G 2015 J. Mater. Chem. A 3 23829Google Scholar

    [51]

    Li M Q, Hu Y Q, Bi L Y, Zhang H L, Wang Y, Zheng Y Z 2017 Chem. Mater. 29 5463Google Scholar

    [52]

    Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Lee D 2018 ACS Appl. Mater. Inter. 10 29741Google Scholar

    [53]

    Liang G X, Chen X Y, Z H Chen, Lan H B, Zheng Z H, Fan P, Tian X Q, Duan J Y, Wei Y D, Su Z H 2019 J. Phys. Chem. C 123 27423Google Scholar

    [54]

    Xiong Z, Hu W, She Y, Lin Q Q, Hu L J, Tang X S, Sun K 2019 ACS Appl. Mater. Inter. 11 30037Google Scholar

    [55]

    Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar

    [56]

    Sundar S, Chakravarty J 2010 Int. J. Environ. Res. Public Health 7 4267Google Scholar

    [57]

    Ahmad K, Mobin S M 2020 ACS Omega 44 28404Google Scholar

    [58]

    Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar

    [59]

    Lewis J S, Laforest R, Buettner T L, et al. 2001 P. Natl. Acad. Sci. USA 3 1206Google Scholar

    [60]

    Cui X P, Jiang K J, Huang J H, Zhang Q Q, Su M J, Yang L M, Song Y L, Zhou X Q 2015 Synthetic Met. 209 247Google Scholar

    [61]

    Cortecchia D, Dewi H A, Yin J, et al. 2016 Inorg. Chem. 55 1044Google Scholar

    [62]

    Yang P, Liu G, Liu B, Liu X, Lou Y, Chen J, Zhao Y 2018 Chem. Commun. 54 11638Google Scholar

    [63]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

    [64]

    Zeng F J, Guo Y Y, Hu W, et al. 2020 J. Lumin. 223 117178Google Scholar

    [65]

    Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Inter. 12 23094Google Scholar

    [66]

    Hu Y Q, Zhang S F, Miao X L, Su L S, Bai F, Qiu T, Liu J Z, Yuan G L 2017 Adv. Mater. Interfaces 4 1700131Google Scholar

    [67]

    Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114Google Scholar

    [68]

    Nili H, Walia S, Kandjani A E, et al. 2015 Adv. Funct. Mater. 25 3172Google Scholar

  • 图 1  卤素钙钛矿分子结构式ABX3 (A: 绿球, 代表正价金属离子或有机官能团. B: 蓝球, 代表金属阳离子. X: 红球, 代表卤素阴离子)[45]

    Fig. 1.  Crystal structure of trihalide perovskite with a chemical structure of ABX3, where A is the organic cation or metal cation (green), B is the metal cation (blue), and X is the halide anion (red)[45].

    图 2  CsSnBr3非铅钙钛矿材料阻变性能 (a) Pt/CsSnBr3/Pt/PET阻变存储器结构示意图; (b)电流-电压(I-V )特性曲线; (c)耐受性[48]

    Fig. 2.  Resistive switching performance of CsSnBr3 lead-free halide perovskite: (a) Schematic of Pt/CsSnBr3/Pt/PET resistive switching device; (b) typical current-voltage (I-V ) curve; (c) endurance performance[48].

    图 3  CsSnI3非铅钙钛矿材料及其阻变性能 (a) CsSnI3晶体结构; (b)阻变存储器结构; (c)器件的截面SEM图; Ag/CsSnI3/Pt/Ti/SiO2/Si器件的(d) I-V特性曲线、(e)耐受性和(f)高低阻态保持特性; Au/CsSnI3/Pt/Ti/SiO2/Si器件的(g) I-V特性曲线、(h)耐受性和(i) 50个不同元器件高低阻态[49]

    Fig. 3.  Resistive switching performance of CsSnI3 lead-free perovskite: (a) CsSnI3 crystal structure; (b) schematic of the Ag or Au/PMMA/CsSnI3/Pt/SiO2/Si vertical stack structure; (c) cross-sectional SEM image of the device; (d) the typical I-V curves, (e) endurance performance, and (f) retention characteristics of low resistances state (LRS) and high resistance state (HRS) of the Ag/PMMA/CsSnI3/Pt devices; (g) the typical I-V curves, (h) endurance performance, and (i) HRS and LRS of 50 different cells of the Au/PMMA/CsSnI3/Pt devices[49].

    图 4  (a) CsGeI3, (b) MAGeI3和(c) FAGeI3的表面扫描电子显微镜(SEM)图谱[50]

    Fig. 4.  Scanning electron microscope (SEM) images of (a) CsGeI3, (b) MAGeI3, and (c) FAGeI3 films[50].

    图 5  铋基非铅卤素钙钛矿晶体结构 (a) Rb3Bi2I9[52]; (b) Cs3Bi2I9[52]; (c) CsBi3I10[53]

    Fig. 5.  Crystal structure of Bi-based perovskite: (a) Rb3Bi2I9[52]; (b) Cs3Bi2I9[52]; (c) CsBi3I10[53].

    图 6  铋基非铅卤素钙钛矿阻变存储器 (a) Au/A3Bi2I9/Pt/Ti/SiO2/Si器件结构示意图; (b) Rb3Bi2I9阻变存储器截面SEM图; (c) Cs3Bi2I9阻变存储器截面SEM图; Rb3Bi2I9阻变存储器的(d) I-V特性曲线、(e)耐受性和(f)保持特性; Cs3Bi2I9阻变存储器的(g) I-V特性曲线、(h)耐受性和(i)保持特性[52]

    Fig. 6.  The Bi-based perovskite resistance random access memory (ReRAM) devices: (a) Schematic of Au/A3Bi2I9/Pt/Ti/SiO2/Si based ReRAM devices; (b) the cross-section SEM image of Rb3Bi2I9 based ReRAM device; (c) the cross-section SEM image of Cs3Bi2I9 based ReRAM device; (d) the typical I-V curve, (e) endurance, and (f) retention of Rb3Bi2I9 based ReRAM; (g) the typical I-V curve, (h) endurance, and (i) retention of Cs3Bi2I9 based ReRAM[52].

    图 7  Al/CsBi3I10/ITO阻变存储器 (a)阻变存储器结构; (b)稳定性; (c)保持特性; (d)耐受性[54]

    Fig. 7.  Al/CsBi3I10/ITO ReRAM device[54]: (a) Schematic; (b) stability; (c) retention; (d) endurance.

    图 8  (a) Cs2AgBi2Br6的晶体结构; (b) Au/Cs2AgBi2Br6/ITO阻变存储器的截面SEM; (c)循环耐受性[55]

    Fig. 8.  (a) Crystal structure of Cs2AgBi2Br6; (b) the cross-section SEM image and (c) the cycle endurance characteristics of Au/Cs2AgBi2Br6/ITO ReRAM[55].

    图 9  Au/Cs2AgBi2Br6/ITO 器件在不同恶劣环境下的I-V特性曲线 (a)相对湿度(RH) 10%—80%; (b)温度范围为303—453 K; (c)酒精灯外焰加热10 s; (d)在60Co射线照射下曝露, 总剂量高达5 × 105 rad(SI)[55]

    Fig. 9.  I-V characteristics of Au/Cs2AgBi2Br6/ITO device in different harsh environments: (a) 10%—80% relative humidity; (b) temperature range from 303 to 453 K; (c) burnt by luminous cone of alcohol lamp for 10 s; (d) exposed under 60Co γ-ray irradiation with a total dose as high as 5 × 105 rad (SI)[55].

    图 10  (a) Ag/PMMA/MA3Sb2Br9/ITO阻变存储器结构示意图; (b) MA3Sb2Br9晶体结构; (c) MA3Sb2Br9薄膜截面SEM图; MA3Sb2Br9基阻变存储器的(d) I-V特性曲线、(e)耐久性和(f)保持时间; (g)依赖于连续脉冲的长期增强(LTP)和长期抑制(LTD)现象; (h)突触前和突触后突峰(用于模拟突峰时间依赖性可塑性(STDP)); (i) STDP行为[58]

    Fig. 10.  (a) Schematic device structure of Ag/PMMA/MA3Sb2Br9/ITO ReRAM; (b) crystal structure of MA3Sb2Br9; (c) cross-sectional SEM image; (d) I-V characteristics, (e) endurance, and (f) retention time of MA3Sb2Br9 based memristors; (g) long-term potentiation (LTP) and long-term depression (LTD) depending on consecutive pulses; (h) presynaptic and postsynaptic spikes for emulating spike timing dependent plasticity (STDP); (i) STDP behavior of an MA3Sb2Br9 memristor[58].

    图 11  (a) Cs3Cu2I5非铅钙钛矿晶体结构; Cs3Cu2I5阻变存储器的(b)垂直结构示意图和(c)循环测试; (d)模拟神经突触示意图; (e)线性增强和线性抑制; (f)美国国家标准技术研究院数据库(MNIST)训练数据识别精度[65]

    Fig. 11.  (a) Cs3Cu2I5 crystal structure; (b) vertical stack structure schematic and (c) cycle tests of the Ag/PMMA/Cs3Cu2I5/ITO memristor; (d) schematic of synapses; (e) linear potentiation and depression; (f) successful recognition accuracy monitored while training the data set from Modified National Institute of Standards and Technology (MNIST)[65].

    图 12  (a) ECM机理; (b) VCM机理; (c)导电细丝在存储介质层的形成和断裂示意图

    Fig. 12.  (a) ECM switching mechanism; (b) VCM switching mechanism; (c) the schematic illustration of filament formation and rupture in the switching layer.

    图 13  (a) Au/PMMA/CsSnI3/Pt器件界面型机理示意图[49]; (b)电场作用下, p型钙钛矿层中锡空位的积累引起的耗尽宽度变化[49]; (c)界面型机理示意图

    Fig. 13.  (a) Schematic of the interface-type switching mechanism in the Au/PMMA/CsSnI3/Pt device[49]; (b) depletion width variation in the p-type perovskite layer according to the accumulation of Sn vacancies under an electric field[49]; (c) the schematic illustration of interface-type switching mechanism in the switching layer

    表 1  基于非铅卤素钙钛矿的阻变存储器的阻变性能

    Table 1.  Resistive switching performance of resistive switching memory parameters based on lead-free halide perovskites.

    器件结构设置/重置电压/V开/关比耐受性/次保持特性/s
    Pt/CsSnBr3/Pt/PET[48]0.2/–0.1510550104
    Ag/PMMA/CsSnI3/Pt/Ti/SiO2/Si[49]0.15/–0.31046007 × 103
    Au/Cs3Bi2I9/Pt/Ti/SiO2/Si[52]–0.5/0.1107400103
    Au/Rb3Bi2I9/Pt/Ti/SiO2/Si[52]–0.5/0.09107100103
    Al/CsBi3I10/ITO[54]–1.7/0.9103100104
    Au/Cs2AgBiBr6/ITO[55]–3.4/2102103105
    Au/Cs3Bi2I9/ITO[66]–0.5/0.3102103104
    Ag/PMMA/MA3Sb2Br9/ITO[58]2.5/–0.5102300104
    Ag/PMMA/Cs3Cu2I5/ITO[65]–1/0.75102100104
    下载: 导出CSV
  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar

    [2]

    Choi S, Shin J H, Lee J, Sheridan P, Lu W. D 2017 Nano Lett. 17 3113Google Scholar

    [3]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [4]

    Mao D, Mejia I, Salas-Villasenor A L, Singh M, Stiegler H, Gnade B E, Quevedo-Lopez M A 2013 Org. Electron. 14 505Google Scholar

    [5]

    Jinnai B, Zhang C, Kurenkov A, Bersweiler M, Sato H, Fukami S, Ohno H 2017 Appl. Phys. Lett. 111 102402Google Scholar

    [6]

    Zhou J, Ji H K, Lan T, Yan J W, Zhou W L, Miao X S. 2016 J. Electron. Mater. 44 235Google Scholar

    [7]

    Chen Y Q, Liu X, Liu Y, Peng C, Fang W X, En Y F, Huang Y 2017 Appl. Phys. Lett. 111 232104Google Scholar

    [8]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mat. Sci. Eng. R. 83 1Google Scholar

    [9]

    Lanza M, Wong H S P, Pop E, et al. 2019 Adv. Electron. Mater. 5 1800143Google Scholar

    [10]

    Jang J, Choi H H, Paik S H, Kim J K, Chung S, Park J H 2018 Adv. Electron. Mater. 4 1800355Google Scholar

    [11]

    Duan W, Rao C, Wang X, Pei Y Mater. 2018 Res. Express 6 016413Google Scholar

    [12]

    Lee M J, Lee C B, Lee D, et al. 2011 Nat. Mater. 10 625Google Scholar

    [13]

    Yang J J, Pickett M D, Li X, Ohlber g D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429Google Scholar

    [14]

    Ng W H, Mehonic A, Buckwell M, Montesi L, Kenyon A J 2018 IEEE Trans. Nanotechnol. 17 884Google Scholar

    [15]

    Song Y, Jang J, Yoo D, Jung S H, Hong S, Lee J K, Lee T 2015 Org. Electron. 17 192Google Scholar

    [16]

    Busby Y, Crespo-Monteiro N, Girleanu M, Brinkmann M, Ersen O, Pireaux J J 2015 Org. Electron. 16 40Google Scholar

    [17]

    You Y, Yang K, Yuan S, Dong S, Zhang H, Huang Q, Gillin W P, Zhan Y, Zheng L 2014 Org. Electron. 15 1983Google Scholar

    [18]

    Suga T, Sakata M, Aoki K, Nishide H 2014 ACS Macro Lett. 3 703Google Scholar

    [19]

    Lee H S, Kang K M, Han W J, Lee T W, Park C S, Choi Y J, Park H H 2014 Appl. Mech. Mater. 597 184Google Scholar

    [20]

    Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar

    [21]

    Li S, Zeng H Z, Zhang S Y, Wei X H 2013 Appl. Phys. Lett. 102 153506Google Scholar

    [22]

    Cui Y, Peng H, Wu S, Wang R, Wu T 2013 ACS Appl. Mater. Inter. 5 1213Google Scholar

    [23]

    Ielmini D 2016 Semicond. Sci. Technol. 6 063002Google Scholar

    [24]

    Liu X, Ji Z, Liu M, Shang L, Li D, Dai Y 2011 Chin. Sci. Bull. 56 3178Google Scholar

    [25]

    Panda D, Tseng T Y 2014 Ferroelectrics 471 23Google Scholar

    [26]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [27]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [28]

    Eames C, Frost J M, Barnes P R, O'Regan B C 2015 Nat. Commun. 6 7497Google Scholar

    [29]

    Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F 2015 Nat. Commun. 6 7124Google Scholar

    [30]

    Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S 2015 Science 347 519Google Scholar

    [31]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [32]

    Chin X Y, Perumal A, Bruno A, et al. 2018 Energ. Environ. Sci. 11 1770Google Scholar

    [33]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [34]

    Choi E S, Yang J M, Kim S G, Cuhadar C, Kim S Y, Kim S H, Lee D, Park N G 2019 Nanoscale 11 14455Google Scholar

    [35]

    Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H, Kim H J 2017 Adv. Mater. Interfaces 4 1601035Google Scholar

    [36]

    Kim S G, Van Le Q, Han J S, et al. 2019 Adv. Funct. Mater. 29 1906686Google Scholar

    [37]

    Kim S Y, Yang J M, Choi E S, Park N G 2019 Nanoscale 11 14330Google Scholar

    [38]

    Zhu Y Y, Cheng P W, Shi J, Wang H J, Liu Y, Xiong R, Ma H Y, Ma HX 2019 Adv. Electron. Mater. 2 1900754Google Scholar

    [39]

    Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar

    [40]

    Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv. Mater. 30 1704002Google Scholar

    [41]

    Kim H, Han J S, Kim G, Kim S Y, Jang H W 2019 J. Mater. Chem. C 7 5226Google Scholar

    [42]

    Xiao X Y, Hu J, Tang S, Yan K, Gao B, Chen H L, Zou C 2020 Adv. Mater. Technol. 5 1900914Google Scholar

    [43]

    Jeong D N, Yang J M, Park N G 2020 Nanotechnology 31 152001Google Scholar

    [44]

    Li B X, Hui W, Ran X Q, Xia D, Xia F, Chao L F, Chen Y H, Huang W 2019 J. Mater. Chem. C 7 7476Google Scholar

    [45]

    Mohd Yusoff A R B, Gao P, Nazeeruddin M K 2018 Coord. Chem. Rev. 373 258Google Scholar

    [46]

    Schroeder H, Balassa J J 1961 J. Chronic Dis. 14 408Google Scholar

    [47]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [48]

    Wang H J, Lin J Q, Zhu Y Y, Zeng X, Wei H, Cheng P W, Lu H B, Liu Y, Xiong R 2020 Adv. Electron. Mater. 11 202000799Google Scholar

    [49]

    Han J S, Le Q V, Choi J, Kim H, Kim S G, Hong K, Moon C W, Kim T L, Kim S Y, Jang H W 2019 ACS Appl. Mater. Inter. 11 8155Google Scholar

    [50]

    Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G 2015 J. Mater. Chem. A 3 23829Google Scholar

    [51]

    Li M Q, Hu Y Q, Bi L Y, Zhang H L, Wang Y, Zheng Y Z 2017 Chem. Mater. 29 5463Google Scholar

    [52]

    Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Lee D 2018 ACS Appl. Mater. Inter. 10 29741Google Scholar

    [53]

    Liang G X, Chen X Y, Z H Chen, Lan H B, Zheng Z H, Fan P, Tian X Q, Duan J Y, Wei Y D, Su Z H 2019 J. Phys. Chem. C 123 27423Google Scholar

    [54]

    Xiong Z, Hu W, She Y, Lin Q Q, Hu L J, Tang X S, Sun K 2019 ACS Appl. Mater. Inter. 11 30037Google Scholar

    [55]

    Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar

    [56]

    Sundar S, Chakravarty J 2010 Int. J. Environ. Res. Public Health 7 4267Google Scholar

    [57]

    Ahmad K, Mobin S M 2020 ACS Omega 44 28404Google Scholar

    [58]

    Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar

    [59]

    Lewis J S, Laforest R, Buettner T L, et al. 2001 P. Natl. Acad. Sci. USA 3 1206Google Scholar

    [60]

    Cui X P, Jiang K J, Huang J H, Zhang Q Q, Su M J, Yang L M, Song Y L, Zhou X Q 2015 Synthetic Met. 209 247Google Scholar

    [61]

    Cortecchia D, Dewi H A, Yin J, et al. 2016 Inorg. Chem. 55 1044Google Scholar

    [62]

    Yang P, Liu G, Liu B, Liu X, Lou Y, Chen J, Zhao Y 2018 Chem. Commun. 54 11638Google Scholar

    [63]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

    [64]

    Zeng F J, Guo Y Y, Hu W, et al. 2020 J. Lumin. 223 117178Google Scholar

    [65]

    Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Inter. 12 23094Google Scholar

    [66]

    Hu Y Q, Zhang S F, Miao X L, Su L S, Bai F, Qiu T, Liu J Z, Yuan G L 2017 Adv. Mater. Interfaces 4 1700131Google Scholar

    [67]

    Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114Google Scholar

    [68]

    Nili H, Walia S, Kandjani A E, et al. 2015 Adv. Funct. Mater. 25 3172Google Scholar

  • [1] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [2] 陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明. 钙钛矿相界面插层对SrFeOx基忆阻器的性能提升. 物理学报, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [3] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [4] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [5] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, 2022, 71(14): 148504. doi: 10.7498/aps.71.20220463
    [6] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [7] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [8] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [9] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [10] 李广辉, 夏婉莹, 孙献文. La施主掺杂SrTiO3单晶的阻变性能研究. 物理学报, 2018, 67(18): 187303. doi: 10.7498/aps.67.20180904
    [11] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [12] 张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮. 氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响. 物理学报, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [13] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [14] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [15] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [16] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [18] 容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进. 基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真. 物理学报, 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [19] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [20] 吴振宇, 董嗣万, 刘毅, 柴常春, 杨银堂. 铜互连电迁移失效阻变特性研究. 物理学报, 2012, 61(24): 248501. doi: 10.7498/aps.61.248501
计量
  • 文章访问数:  7149
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-02-09
  • 上网日期:  2021-07-29
  • 刊出日期:  2021-08-05

/

返回文章
返回