搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究

王剑涛 肖文波 夏情感 吴华明 李璠 黄乐

引用本文:
Citation:

背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究

王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐

Influence of back electrode material, structure and thickness on performance of perovskite solar cells

Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le
PDF
HTML
导出引用
  • 背电极是影响钙钛矿太阳电池性能的一个重要因素. 本文采用COMSOL软件仿真研究了背电极材料、结构、厚度对电池性能的影响规律. 发现相对于背电极金属的功函数, 其阻值对电池性能影响小. 背电极结构除了阻值会影响电池性能, 还存在影响电池性能的其他因素. 蜂窝结构背电极中, 考虑制作难易程度的情况下, 圆形半径约等于边缘间距时性价比最高. 预测背电极中每增加10%的孔隙, 电池性能大约提升5%. 背电极阻值随着厚度的增加而减小, 考虑工艺、成本等因素的前提下, 最佳的厚度应在100—150 nm之间.
    The back electrode is an important factor affecting the performance of perovskite solar cells. In this paper, the effects of back electrode material, structure and thickness on the performance of perovskite solar cells are studied by using COMSOL software. It is found that compared with the work function of the back electrode metal, its resistance has small effect on solar cell performance. Besides the back electrode structures affecting cell performance, there are other factors affecting cell performance. In terms of the back electrodes with honeycomb structure, considering the difficulty in fabricating, the best cost performance occurs when the radius of the circle is approximately equal to the edge spacing. It is predicted that the cell performance will be improved by about 5% in porosity with increasing 10% in the back electrode. The resistance of the back electrode decreases with its thickness increasing. Considering the process and cost, the optimal thickness should be between 100 nm and 150 nm.
      通信作者: 肖文波, xiaowenbo1570@163.com
    • 基金项目: 国家自然科学基金(批准号: 12064027, 62065014, 62064007)、无损检测技术教育部重点实验室开放基金(批准号: EW201908442, EW201980090)和江西省主要学科学术和技术带头人培养计划-领军人才项目(批准号: 20204BCJ22002)资助的课题
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064027, 62065014, 62064007), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education, China (Grant Nos. EW201908442, EW201980090), and the Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province - Leading Talent Project, China (Grant No. 20204BCJ22002)
    [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen X, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [3]

    姬超, 梁春军, 由芳田, 何志群 2021 物理学报 70 028402Google Scholar

    Ji C, Liang C J, You T F, He Z Q 2021 Acta Phys. Sin. 70 028402Google Scholar

    [4]

    Zhao Y, Wei J, Li, Y Yan, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [5]

    Walter D, Wu Y, Duong T, Peng J, Jiang L, Fong K C, Weber K 2018 Adv. Energy Mater. 8 1701522Google Scholar

    [6]

    朱彧, 杜晨, 王硕, 马瑞新, 王成彦 2020 工程科学学报 42 16

    Zhu Y, Du C, Wang S, Ma R X, Wang C Y 2020 Chin. J. Eng. 42 16

    [7]

    彭英才, 傅广生 2014 新概念太阳电池 (北京: 科学出版社) 第38−39页

    Peng Y C, Fu G S 2014 New Concept Solar Cell (Beijing: Science Press) pp38−39 (in Chinese)

    [8]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (UK: Stylus Pub Llc) pp64−67

    [9]

    Lin C Y, Wan C C, Wei T C 2011 Electrochim. Acta 56 1941Google Scholar

    [10]

    Fan Z J, Yi F S, Guo S, Bi Y G 2019 Opt. Eng. 58 017103

    [11]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [12]

    Hu Y, Adhyaksa G W P, DeLuca G, Simonov A N, Duffy N W, Reichmanis E, Bach U, Docampo P, Bein T, Garnett E C, Chesman A S R, Jumabekov A N 2019 AIP Adv. 9 125037Google Scholar

    [13]

    Jian W, Xu R P, Li Y Q, Chi L, Chen J D, Zhao X D, Xie Z Z, Lee C S, Zhang W J, Tang J X 2017 Adv. Energy Mater. 7 1700492Google Scholar

    [14]

    Yang W, Yang Z, Shou C, Sheng J, Yan B, Ye J 2020 Sol. Energy 201 84Google Scholar

    [15]

    Behrouznejad F, Tsai C M, Narra S, Diau E, Taghavinia N 2017 ACS Appl. Mater. Interfaces 9 25204Google Scholar

    [16]

    Lin X, Chesman A S R, Raga S R, Scully A D, Jiang L, Tan B, Lu J, Cheng Y B, Bach U 2018 Adv. Funct. Mater. 28 1805098Google Scholar

    [17]

    Jahantigh F, Ghorashi S M B 2019 Nano 14 1950127Google Scholar

    [18]

    Saxena P, Gorji N E 2019 IEEE J. Photovoltaics 9 1693Google Scholar

    [19]

    王媛, 崔艳, 吴以治 2019 人工晶体学报 48 2075Google Scholar

    Wang Y, Cui Y, Wu Y Z 2019 J. Synth. Cryst. 48 2075Google Scholar

    [20]

    车俐佳, 郭艳群, 邹谭圆, 盛鑫, 赖文志, 蔡传兵 2020 功能材料与器件学报 25 43

    Che L J, Guo Y Q, Zou T Y, Sheng X, Lai W Z, Cai C B 2020 J. Funct. Mater. Devices 25 43

    [21]

    甘永进, 莫沛, 杨瑞兆, 饶俊慧, 李清流, 毕雪光 2021 固体电子学研究与进展 41 53

    Gan Y J, Mo P, Yang R Z, Rao J H, Li Q L, Bi X G 2021 Prog. Solid State Electron. 41 53

    [22]

    Hou Q, Dorota B, Jumabekov A N, Wei L, Wang Z, Lin X, Hock N S, Tan B, Bao Q, Chesman A S R, Bing C, Bach U 2018 Nano Energy 50 710Google Scholar

    [23]

    Zhou X, Bao C, Li F M, Gao H, Yu T, Yang J, Zhu W, Zou Z 2015 RSC Adv. 5 58543Google Scholar

    [24]

    Mesquita I, Andrade L, Mendes A 2018 Renewable Sustainable Energy Rev. 82 2471Google Scholar

  • 图 1  文献(a)及本文(b)构建的背电极结构在COMSOL中的网格剖分图; (c)文献与本文计算的背电极电阻-厚度变化趋势图

    Fig. 1.  The grid diagram of the back electrode structure constructed in literature (a) and this paper (b) in COMSOL; (c) back electrode resistance changing with its thickness.

    图 2  6种金属的背电极功函数、电池转换效率(a)及其电阻(b)

    Fig. 2.  Back electrode work function, cell conversion efficiency (a) and electrode resistance (b) of six metals.

    图 3  S-HQIDE (a、c)和L-HQIDE(b、d)的背电极结构以及仿真图

    Fig. 3.  Back electrode structure and simulation diagram of S-HQIDE ((a), (c)) and L-HQIDE ((b), (d)).

    图 4  蜂窝结构背电极电阻随圆形半径的变化

    Fig. 4.  The resistance of the back electrode with honeycomb structure varies with the radius of the circle.

    图 5  无孔隙及10%随机孔隙时背电极仿真图及其电阻(a), 以及占比变化对其电阻值影响(b)

    Fig. 5.  Simulation diagram of back electrode without and with 10% random pores and its resistance (a), and the influence of proportion change on its resistance (b).

    图 6  仿真蜂窝结构(a)及背电极电阻-厚度变化趋势图(b)

    Fig. 6.  Simulated honeycomb structure (a) and back electrode resistance changing with its thickness (b).

  • [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen X, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [3]

    姬超, 梁春军, 由芳田, 何志群 2021 物理学报 70 028402Google Scholar

    Ji C, Liang C J, You T F, He Z Q 2021 Acta Phys. Sin. 70 028402Google Scholar

    [4]

    Zhao Y, Wei J, Li, Y Yan, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [5]

    Walter D, Wu Y, Duong T, Peng J, Jiang L, Fong K C, Weber K 2018 Adv. Energy Mater. 8 1701522Google Scholar

    [6]

    朱彧, 杜晨, 王硕, 马瑞新, 王成彦 2020 工程科学学报 42 16

    Zhu Y, Du C, Wang S, Ma R X, Wang C Y 2020 Chin. J. Eng. 42 16

    [7]

    彭英才, 傅广生 2014 新概念太阳电池 (北京: 科学出版社) 第38−39页

    Peng Y C, Fu G S 2014 New Concept Solar Cell (Beijing: Science Press) pp38−39 (in Chinese)

    [8]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (UK: Stylus Pub Llc) pp64−67

    [9]

    Lin C Y, Wan C C, Wei T C 2011 Electrochim. Acta 56 1941Google Scholar

    [10]

    Fan Z J, Yi F S, Guo S, Bi Y G 2019 Opt. Eng. 58 017103

    [11]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [12]

    Hu Y, Adhyaksa G W P, DeLuca G, Simonov A N, Duffy N W, Reichmanis E, Bach U, Docampo P, Bein T, Garnett E C, Chesman A S R, Jumabekov A N 2019 AIP Adv. 9 125037Google Scholar

    [13]

    Jian W, Xu R P, Li Y Q, Chi L, Chen J D, Zhao X D, Xie Z Z, Lee C S, Zhang W J, Tang J X 2017 Adv. Energy Mater. 7 1700492Google Scholar

    [14]

    Yang W, Yang Z, Shou C, Sheng J, Yan B, Ye J 2020 Sol. Energy 201 84Google Scholar

    [15]

    Behrouznejad F, Tsai C M, Narra S, Diau E, Taghavinia N 2017 ACS Appl. Mater. Interfaces 9 25204Google Scholar

    [16]

    Lin X, Chesman A S R, Raga S R, Scully A D, Jiang L, Tan B, Lu J, Cheng Y B, Bach U 2018 Adv. Funct. Mater. 28 1805098Google Scholar

    [17]

    Jahantigh F, Ghorashi S M B 2019 Nano 14 1950127Google Scholar

    [18]

    Saxena P, Gorji N E 2019 IEEE J. Photovoltaics 9 1693Google Scholar

    [19]

    王媛, 崔艳, 吴以治 2019 人工晶体学报 48 2075Google Scholar

    Wang Y, Cui Y, Wu Y Z 2019 J. Synth. Cryst. 48 2075Google Scholar

    [20]

    车俐佳, 郭艳群, 邹谭圆, 盛鑫, 赖文志, 蔡传兵 2020 功能材料与器件学报 25 43

    Che L J, Guo Y Q, Zou T Y, Sheng X, Lai W Z, Cai C B 2020 J. Funct. Mater. Devices 25 43

    [21]

    甘永进, 莫沛, 杨瑞兆, 饶俊慧, 李清流, 毕雪光 2021 固体电子学研究与进展 41 53

    Gan Y J, Mo P, Yang R Z, Rao J H, Li Q L, Bi X G 2021 Prog. Solid State Electron. 41 53

    [22]

    Hou Q, Dorota B, Jumabekov A N, Wei L, Wang Z, Lin X, Hock N S, Tan B, Bao Q, Chesman A S R, Bing C, Bach U 2018 Nano Energy 50 710Google Scholar

    [23]

    Zhou X, Bao C, Li F M, Gao H, Yu T, Yang J, Zhu W, Zou Z 2015 RSC Adv. 5 58543Google Scholar

    [24]

    Mesquita I, Andrade L, Mendes A 2018 Renewable Sustainable Energy Rev. 82 2471Google Scholar

  • [1] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究. 物理学报, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [11] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [12] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [13] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [15] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [16] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [17] 张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓. GaN薄膜中的马赛克结构随厚度发生的变化. 物理学报, 2013, 62(5): 056101. doi: 10.7498/aps.62.056101
    [18] 田晶, 杨鑫, 刘尚军, 练晓娟, 陈金伟, 王瑞林. 直流磁控溅射厚度对Cu(Inx,Ga1-x)Se2背接触Mo薄膜性能的影响. 物理学报, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [19] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [20] 巫 翔, 秦 善, 吴自玉, 董宇辉, 刘 景, 李晓东. 钙钛矿CaTiO3的超高压结构研究. 物理学报, 2004, 53(6): 1967-1971. doi: 10.7498/aps.53.1967
计量
  • 文章访问数:  9994
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-08-09
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-10-05

/

返回文章
返回