-
基于宽禁带半导体材料氧化镓(Ga2O3)制备日盲深紫外(UV)光电探测器是当前研究的热点课题之一, 但如何制备出高性能的Ga2O3基日盲探测器应用于柔性透明光电子领域仍然存在挑战. 本文采用射频磁控溅射技术在柔性云母衬底上生长了具有高透射率的非晶Ga2O3薄膜. 在此基础之上, 采用铝掺杂氧化锌(AZO)作为电极材料, 制备了非晶Ga2O3薄膜基金属-半导体-金属(MSM)结构的透明日盲深紫外光电探测器, 并系统对比分析了平面状态和多次弯曲后的器件性能. 结果表明, 非晶Ga2O3基透明探测器具有超高的可见光透明度, 并显示出良好的日盲紫外光电特性. 器件在254 nm光照下的响应率为2.69 A/W, 响应和恢复时间为0.14 s/0.31 s. 经过300次机械弯曲后, 器件具有与其平面状态相近的光响应行为, 器件性能没有发生明显的衰减现象, 表现出良好的柔韧性和稳定性. 本工作证实了AZO薄膜可作为下一代柔性和可见光透明的Ga2O3基探测器的电极材料, 并为研制高性能柔性透明日盲深紫外探测器提供一定参考.Solar-blind deep-ultraviolet (UV) photodetectors (PDs) based on the super-wide bandgap semiconductor material Ga2O3 is one of the hot topics of current research, but how to prepare high-performance Ga2O3-based solar-blind PDs in the field of flexible and transparent optoelectronics still faces challenges. In this work, an amorphous Ga2O3 film with high transmittance is grown on a flexible mica substrate by using the radio frequency magnetron sputtering technology. On this basis, using AZO as an electrode material, a transparent metal-semiconductor-metal (MSM) structured solar-blind deep ultraviolet photodetector based amorphous Ga2O3 film is fabricated, and the performance of PD in the planar state and after multiple bending are systematically compared and analyzed. The results show that the amorphous Ga2O3 based transparent PD has ultra-high visible light transparency and shows good solar-blind ultraviolet photoelectric characteristics. The responsivity of the PD under 254 nm light is 2.69 A/W, and the response time and the recovery time are 0.14 s and 0.31 s, respectively. After bending 300 times, the PD has a photoresponse behavior similar to its planar state, and the performance of the PD has no obvious attenuation phenomenon, showing good flexibility and stability. This work proves that AZO can be used as the electrode material of the next generation of flexible and visible light transparent Ga2O3 based photodetectors, and provides a reference for developing the high-performance flexible and transparent solar-blind deep ultraviolet photodetectors.
-
Keywords:
- Ga2O3 thin film /
- amorphous /
- solar-blind ultraviolet photodetector /
- transparent /
- flexible
[1] Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar
[2] Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar
[3] Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar
[4] Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar
[5] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar
[6] Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar
[7] Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar
[8] Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar
[9] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar
[10] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar
[11] Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar
[12] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[13] Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar
[14] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar
[15] Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar
[16] Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar
[17] Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar
[18] Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar
[19] Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar
[20] Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar
[21] Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar
[22] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar
[23] Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar
[24] Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar
[25] Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar
[26] Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar
[27] Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar
[28] Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar
[29] Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar
[30] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[31] Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar
[32] 郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar
[33] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[34] Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar
[35] Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar
[36] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar
[37] Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar
[38] Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar
[39] Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar
[40] Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar
[41] Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar
[42] Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar
-
图 1 柔性衬底云母上沉积的Ga2O3薄膜 (a) XRD图谱; (b) Raman散射光谱; (c) Ga 2p核心能级谱; (d) O 1s核心能级谱; (e) 紫外可见光透射光谱(插图为样品放置于LOGO上的照片); (d) (αhν)2随光子能量(hν)的变化关系
Fig. 1. (a) The XRD pattern, (b) Raman scattering spectra, (c) Ga 2p core level spectra, (d) O 1s core level spectra, (e) optical transmittance spectra (the photograph of the as-grown Ga2O3 film is depicted in the inset) and (f) the variation of (αhν)2 with photon energy (hν) of the Ga2O3 film deposited on flexible mica substrate, respectively.
图 2 平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器: (a) MSM型器件示意图; (b) 置于LOGO上的实物照片; (c) 在黑暗条件下, 365和254 nm光照下的I-V曲线(对数坐标); (d) 在–0.10−0.15 V偏置电压内的I-V曲线放大图, 插图为5 V偏压下光照强度与光电流之间的关系; (e) 黑暗条件下的能带示意图; (f) 254 nm光照下的能带示意图
Fig. 2. (a) The schematic diagram of the MSM photodetector; (b) the photograph of the Ga2O3 PD; (c) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V, and the inset shows the relationship between the light intensity and photocurrent under 5 V bias; (e) schematic energy band diagrams in dark; (f) schematic energy band diagrams under 254 nm light illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.
图 3 平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器 (a) 在254和365 nm光照下的I-t特性曲线; (b) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合
Fig. 3. (a) Time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (b) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.
图 4 非晶态Ga2O3薄膜基柔性透明日盲探测器在曲率半径 r = 7.5 mm条件下, 经300次弯曲后器件性能 (a) 弯曲实验下柔性装置的原位照片; (b) 在黑暗条件下, 365和254 nm光照下的I-V特性曲线(对数坐标); (c) 光照强度与光电流之间的关系; (d) 在–0.10−0.15 V偏置电压内的I-V特性曲线放大图; (e) 在254和365 nm光照下的I-t特性曲线; (f) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合
Fig. 4. (a) An in-situ photograph of the flexible PD under a bending test; (b) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (c) the relationship between the light intensity and photocurrent; (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V; (e) time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (f) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films after bending 300 cycles with r = 7.5 mm, respectively.
-
[1] Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar
[2] Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar
[3] Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar
[4] Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar
[5] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar
[6] Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar
[7] Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar
[8] Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar
[9] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar
[10] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar
[11] Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar
[12] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[13] Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar
[14] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar
[15] Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar
[16] Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar
[17] Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar
[18] Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar
[19] Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar
[20] Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar
[21] Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar
[22] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar
[23] Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar
[24] Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar
[25] Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar
[26] Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar
[27] Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar
[28] Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar
[29] Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar
[30] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[31] Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar
[32] 郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar
[33] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[34] Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar
[35] Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar
[36] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar
[37] Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar
[38] Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar
[39] Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar
[40] Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar
[41] Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar
[42] Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar
计量
- 文章访问数: 7356
- PDF下载量: 197
- 被引次数: 0