搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能

王桂强 毕佳宇 刘洁琼 雷苗 张伟

引用本文:
Citation:

醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能

王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟

Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells

Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei
PDF
HTML
导出引用
  • 由于具有适合的带隙和较高的稳定性, CsPbIBr2无机钙钛矿被认为是一种较有前景的太阳能电池光吸收材料. 但是目前报道的CsPbIBr2钙钛矿太阳能电池效率还偏低, 主要原因是制备的CsPbIBr2钙钛矿膜质量差、缺陷多. 本文通过将醋酸纤维素(CA)加入CsPbIBr2钙钛矿前驱体溶液中改善CsPbIBr2钙钛矿结晶过程, 从而制备高质量的CsPbIBr2钙钛矿膜. 实验结果表明, CA中的C=O基团与前驱体溶液中的Pb2+间存在明显的相互作用, 这种相互作用结合CA加入引起的前驱体溶液粘度增加, 使CsPbIBr2钙钛矿的结晶速率明显降低, 从而制备了致密、结晶度高、晶粒尺寸大、晶界和缺陷少的高质量CsPbIBr2钙钛矿膜. 同时, CA的保护作用显著提高了CsPbIBr2钙钛矿膜的稳定性. 用碳材料层作为空穴传输层和背电极, 制备结构为FTO/TiO2/CsPbIBr2钙钛矿膜/碳层的碳基CsPbIBr2钙钛矿太阳能电池. 在100 mW/cm2光照下, CA-CsPbIBr2钙钛矿太阳能电池的效率达到7.52%, 比未加CA的CsPbIBr2钙钛矿电池提高了40%. 同时, 将CA-CsPbIBr2钙钛矿太阳能电池在空气环境中贮存800 h, 其效率仍保持初始值的90%以上, 表明具有较高的长期稳定性.
    CsPbIBr2 perovskite has been considered as a promising candidate for the light-harvesting material of perovskite solar cells (PSCs) due to its acceptable band gap and high stability. Nevertheless, the efficiency of CsPbIBr2-based PSC still lags behind that of its homologs and is far away from the theoretical value. This can be attributed to the poor quality of CsPbIBr2 perovskite film. Therefore, it is highly desirable to improve the quality of CsPbIBr2 perovskite film for enhancing the photovoltaic performance of CsPbIBr2 PSCs. In this work, cellulose acetate (CA) is used as a polymer additive that is introduced into CsPbIBr2 precursor solution for improving the quality of CsPbIBr2 perovskite film via controlling crystallization process. The interaction between the C=O group of CA and Pb2+ in the precursor solution and the enhanced viscosity of precursor solution induced by CA addition reduce the crystallization rate of CsPbIBr2 perovskite. As a result, a compact CsPbIBr2 perovskite film with high crystallinity, large grain size, and low density of defect is prepared. The remarkably improved quality of CsPbIBr2 perovskite film upon CA addition can be attributed to the relatively slow crystallization rate. The slow crystallization rate allows the perovskite film to have enough time to form perfect perovskite crystal structure with large-size crystal grain and low density of defects. Furthermore, the oxygen functional groups of CA can passivate the undercoordinated Pb2+, which effectively suppresses the defects and traps induced by Pb2+ in CsPbIBr2 perovskite film. The stability of CsPbIBr2 perovskite film is also greatly improved by CA addition. The added CA does not participate into the CsPbIBr2 perovskite crystal but distributes at the grain boundaries and, or, interfaces area and forms a moisture barrier around perovskite grains, which obviously enhances the stability of CsPbIBr2 perovskite film in the ambient air. The carbon-based CsPbIBr2 perovskite solar cells with a configuration of FTO/TiO2/perovskite film/ carbon are fabricated by using the carbon layer as both the hole-transport layer and the back electrode. Under the illumination of 100 mW/cm2, the PSC based on CA-CsPbIBr2 perovskite film delivers a high conversion efficiency of 7.52%, which is increased by 40% compared with the efficiency of the device based on the pure CsPbIBr2 perovskite film. In addition, the PSC based on CA-CsPbIBr2 perovskite film shows a hysteresis index (HI) of 7%, while the device based on pure CsPbIBr2 film displays a higher HI of 22%. This result demonstrates that the CA addition can effectively suppress the hysteresis effect of inorganic PSCs. The stability of the PSC based on CA-CsPbIBr2 perovskite film is investigated by tracking the variation of the efficiency with time in the ambient condition. The fabricated PSCs without any encapsulation are stored in the air. The photovoltaic performance is measured once a day. The efficiency of the PSC based on CA-CsPbIBr2 perovskite remains more than 90% of its initial value after being stored in the air for 800 h, showing an excellent long-term stability. Therefore, this work provides a facile and effective method of improving the quality of CsPbIBr2 perovskite films, which is expected to be helpful in developing high-efficiency and stable carbon-based inorganic PSCs.
      通信作者: 王桂强, wgqiang@bhu.edu.cn
    • 基金项目: 辽宁省教育厅创新基金重点项目(批准号: LZ2019003)资助课题
      Corresponding author: Wang Gui-Qiang, wgqiang@bhu.edu.cn
    • Funds: Project supported by the Key Program of the Education Department of Liaoning Province, Chinese (Grant No. LZ2019003)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Ono L K, Qi Y 2016 J. Phys. Chem. Lett. 7 4764Google Scholar

    [3]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [4]

    Deng X, Xie L, Wang S 2020 Chem. Eng. J. 398 125594Google Scholar

    [5]

    Huang Y, Liu T, Liang C 2020 Adv. Funct. Mater. 30 2000863Google Scholar

    [6]

    Jia X, Zho C, Tao S 2019 Sci. Bull. 64 1532Google Scholar

    [7]

    Tai Q, Tang K, Yan F 2019 Energy Environ. Sci. 12 2375Google Scholar

    [8]

    Li B, Fu L, Li S, Pan L, Wang L, Yin L 2019 J. Mater. Chem. A 7 20494Google Scholar

    [9]

    Wang G, Lei M, Liu J, Zhang W, He Q 2020 Solar RRL 4 2000528Google Scholar

    [10]

    Duan J, Xu H, Sha W, Tang Q 2019 J. Mater. Chem. A 7 21036Google Scholar

    [11]

    Wang Y, Liu X, Zhang T, Wang X, J. Shi, Zhao Y 2019 Angew. Chem. Int. Ed. 58 16691Google Scholar

    [12]

    Li Z, Zhou F, Wang Q 2020 Nano Energy 71 104634Google Scholar

    [13]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. 57 3787Google Scholar

    [14]

    Chang X, Li W, Zhu L 2016 ACS Appl. Mater. Interfaces 8 33649Google Scholar

    [15]

    Liu X, Tan X, Liu Z, Sun B, Tan Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [16]

    Guo Y, Yin X, Liu J 2019 Solar RRL 3 1900135Google Scholar

    [17]

    Guo Z, Teo S, Xu Z, S. Hayase, Ma T 2019 J. Mater. Chem. A 7 1227Google Scholar

    [18]

    Ma Q, Huang S, Wen X 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [19]

    Subhani W, Wang K, Du M 2019 Adv. Energy Mater. 9 1803785Google Scholar

    [20]

    Ren Y, Hao Y, Zhang N, Cai M, Dai S 2020 Chem. Eng. J. 392 123805Google Scholar

    [21]

    Li B, Zhang Y, Fu L 2018 Nat. Commun. 9 1076Google Scholar

    [22]

    Peng H, Cai M, Zhou J, Ding X, Pan J, Dai S 2020 Solar RRL 4 2000216Google Scholar

    [23]

    Xu W, Zhu T, Wu H 2020 ACS Appl. Mater. Interfaces 12 45045Google Scholar

    [24]

    Zhao Y C, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [25]

    Wu W, Zhong J, Liao J 2020 Nano Energy 75 104929Google Scholar

    [26]

    Yang J, Liu C, Cai C 2019 Adv. Energy Mater. 9 1900198Google Scholar

    [27]

    Yin G, Zhao H, Jiang H, Liu Z, Liu S 2018 Adv. Funct Mater. 28 1803269Google Scholar

    [28]

    Du J, Duan J, Yang X, Duan Y, Zhou Q, Tang Q 2021 Angew. Chem. Int. Ed. 60 1Google Scholar

    [29]

    Wang Z, BaranwalA K, Kamarudin M A, Ng C, Pandey M, Ma T, Hayase S 2019 Nano Energy 59 258Google Scholar

  • 图 1  CA, CsPbIBr2前驱体和CA-CsPbIBr2前驱体样品的FTIR光谱

    Fig. 1.  FTIR spectra of CA, CsPbIBr2 precursor, and CA-CsPbIBr2 precursor samples.

    图 2  (a) CsPbIBr2和(b) CA-CsPbIBr2钙钛矿前驱体膜在200 ℃下不同热处理时间的XRD曲线和对应的薄膜照片(插图)

    Fig. 2.  XRD curves of (a) CsPbIBr2 and (b) CA- CsPbIBr2 perovskite films annealed at 200 oC with different times, the insets are the photos of corresponding perovskite films.

    图 3  CA-CsPbIBr2钙钛矿结晶膜的形成过程示意图

    Fig. 3.  Schematic illumination of the formation procedures of CA-CsPbIBr2 perovskite film.

    图 4  贮存在温度为30 ℃、相对湿度为85%的空气环境中不同时间点的(a) CsPbIBr2和(b) CA-CsPbIBr2钙钛矿膜的XRD曲线(插图为对应的CsPbIBr2和CA- CsPbIBr2照片)

    Fig. 4.  XRD curves of (a) CsPbIBr2 and (b) CA-CsPbIBr2 perovskite films stored in the air with a temperature of 30 ℃ and a relative humidity of 85% (the insets are the photos of CsPbIBr2 and CA-CsPbIBr2 perovskite films).

    图 5  (a) CsPbIBr2及(b) CA-CsPbIBr2钙钛矿膜的SEM照片, 插图是截面SEM照片; (c) CsPbIBr2及CA-CsPbIBr2钙钛矿膜的XRD曲线

    Fig. 5.  SEM images of (a) CsPbIBr2 and (b) CA- CsPbIBr2 perovskite films, the inset are the cross-sectional SEM images; (c) XRD curves of CsPbIBr2 and CA-CsPbIBr2 perovskite films.

    图 6  CsPbIBr2和CA-CsPbIBr2钙钛矿膜的紫外-可见吸收光谱和稳态PL光谱

    Fig. 6.  UV-Vis absorption and steady-state PL spectra of CsPbIBr2 and CA-CsPbIBr2 perovskite films.

    图 7  (a) CsPbIBr2和CA-CsPbIBr2钙钛矿太阳能电池在正向和反向扫描条件下测得的光电流密度-电压(J-V)曲线; (b) CsPbIBr2和CA-CsPbIBr2钙钛矿太阳能电池Nyquist曲线; (c) 空气环境中, 未密封CsPbIBr2和CA-CsPbIBr2钙钛矿太阳能电池的光电转换效率随时间的变化趋势

    Fig. 7.  (a) Photocurrent density-voltage (J-V) curves of perovskite solar cells based on CsPbIBr2 and CA-CsPbIBr2 perovskite films measured under forward and reverse scans; (b) Nyquist plots of CsPbIBr2 and CA-CsPbIBr2 perovskite solar cells; (c) variation of PCE of perovskite solar cells based on CsPbIBr2 and CA-CsPbIBr2 perovskite films stored in ambient air.

    表 1  CsPbIBr2和CA-CsPbIBr2钙钛矿太阳能电池界面电荷复合电阻及正向和反向扫描测得的光电参数

    Table 1.  The recombination resistances (Rrec) and photovoltaic parameters of perovskite solar cells based on CsPbIBr2 and CA-CsPbIBr2 perovskite films measured under forward and reverse scans.

    电池扫描方向Voc/VJsc/(mA·cm2)FFPCE/%HIaRrec
    CsPbIBr2正向平均0.96 ± 0.059.89 ± 0.390.33 ± 0.43.13 ± 0.7222%1448
    最高1.0310.350.394.16
    反向平均1.01 ± 0.0310.21 ± 0.420.45 ± 0.024.64 ± 0.56
    最高1.0710.620.475.34
    CA
    -CsPbIBr2
    正向平均1.02 ± 0.0310.52 ± 0.370.57 ± 0.026.12 ± 0.677%2269
    最高1.0610.910.606.94
    反向平均1.05 ± 0.0310.55 ± 0.270.62 ± 0.026.87 ± 0.38
    最高1.0810.880.647.52
    a HI = (PCE反向–PCE正向)/PCE反向
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Ono L K, Qi Y 2016 J. Phys. Chem. Lett. 7 4764Google Scholar

    [3]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [4]

    Deng X, Xie L, Wang S 2020 Chem. Eng. J. 398 125594Google Scholar

    [5]

    Huang Y, Liu T, Liang C 2020 Adv. Funct. Mater. 30 2000863Google Scholar

    [6]

    Jia X, Zho C, Tao S 2019 Sci. Bull. 64 1532Google Scholar

    [7]

    Tai Q, Tang K, Yan F 2019 Energy Environ. Sci. 12 2375Google Scholar

    [8]

    Li B, Fu L, Li S, Pan L, Wang L, Yin L 2019 J. Mater. Chem. A 7 20494Google Scholar

    [9]

    Wang G, Lei M, Liu J, Zhang W, He Q 2020 Solar RRL 4 2000528Google Scholar

    [10]

    Duan J, Xu H, Sha W, Tang Q 2019 J. Mater. Chem. A 7 21036Google Scholar

    [11]

    Wang Y, Liu X, Zhang T, Wang X, J. Shi, Zhao Y 2019 Angew. Chem. Int. Ed. 58 16691Google Scholar

    [12]

    Li Z, Zhou F, Wang Q 2020 Nano Energy 71 104634Google Scholar

    [13]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. 57 3787Google Scholar

    [14]

    Chang X, Li W, Zhu L 2016 ACS Appl. Mater. Interfaces 8 33649Google Scholar

    [15]

    Liu X, Tan X, Liu Z, Sun B, Tan Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [16]

    Guo Y, Yin X, Liu J 2019 Solar RRL 3 1900135Google Scholar

    [17]

    Guo Z, Teo S, Xu Z, S. Hayase, Ma T 2019 J. Mater. Chem. A 7 1227Google Scholar

    [18]

    Ma Q, Huang S, Wen X 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [19]

    Subhani W, Wang K, Du M 2019 Adv. Energy Mater. 9 1803785Google Scholar

    [20]

    Ren Y, Hao Y, Zhang N, Cai M, Dai S 2020 Chem. Eng. J. 392 123805Google Scholar

    [21]

    Li B, Zhang Y, Fu L 2018 Nat. Commun. 9 1076Google Scholar

    [22]

    Peng H, Cai M, Zhou J, Ding X, Pan J, Dai S 2020 Solar RRL 4 2000216Google Scholar

    [23]

    Xu W, Zhu T, Wu H 2020 ACS Appl. Mater. Interfaces 12 45045Google Scholar

    [24]

    Zhao Y C, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [25]

    Wu W, Zhong J, Liao J 2020 Nano Energy 75 104929Google Scholar

    [26]

    Yang J, Liu C, Cai C 2019 Adv. Energy Mater. 9 1900198Google Scholar

    [27]

    Yin G, Zhao H, Jiang H, Liu Z, Liu S 2018 Adv. Funct Mater. 28 1803269Google Scholar

    [28]

    Du J, Duan J, Yang X, Duan Y, Zhou Q, Tang Q 2021 Angew. Chem. Int. Ed. 60 1Google Scholar

    [29]

    Wang Z, BaranwalA K, Kamarudin M A, Ng C, Pandey M, Ma T, Hayase S 2019 Nano Energy 59 258Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 1-11. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [5] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [6] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [8] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [9] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能. 物理学报, 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [10] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [11] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [12] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [13] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [14] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [15] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [16] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  7289
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-08-29
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回