-
提出并研究了一种由三组明模组成的类电磁诱导透明太赫兹超材料结构. 两组具有相似共振频率的明模为两个弱杂化态, 能量在两个共振点之间来回振荡, 产生相消干涉, 在两个共振点之间产生透射窗口. 该超材料的三组明模两两耦合干涉产生双频段的类电磁诱导透明效应. 根据仿真曲线和电场分布, 分析了超材料的类电磁诱导透明形成机理. 此外, 通过仿真和计算研究了超材料的传感特性, 在待测物的最佳厚度下, 两个类电磁诱导透明窗口的折射率灵敏度可高达451.92和545.31 GHz/RIU. 通过对6种石油产品的传感仿真, 验证了双频段超材料比单频段超材料在介电常数匹配方面更具有优势. 还研究了所设计的超材料在慢光效应下的特性. 这两个窗口的最大群时延分别可达9.98和6.23 ps, 此超材料在高灵敏度传感器和慢光器件领域具有重要的应用价值.
Electromagnetically induced transparency (EIT) is a quantum interference phenomenon in a three-level atomic system. The generation of quantum interference effect significantly reduces the light absorptivity of the specific frequency that is strongly absorbed, and produces a sharp “transmission window” in the resonance absorption region. The EIT is usually accompanied by strong dispersion, which significantly reduces the group velocity of light and enhances the nonlinear interaction. The EIT phenomenon of atomic system usually needs to be observed at very low temperature or high intensity laser, which is a very serious challenge for the application of EIT technology. The simulation of electromagnetically induced transparency using metamaterials can effectively break through these limitations. In this work, an electromagnetically induced transparency-like terahertz metamaterial structure with three bright modes is proposed and investigated. Two weakly hybrid states are composed of two bright modes with similar resonant frequencies. The energy oscillates back and forth between the two modes, and a transparent window is generated between the two resonance points. The designed metamaterial is composed of three groups of bright modes with adjacent resonant frequencies, and the three groups of bright modes are coupled to produce two transparent windows. The electromagnetically induced transparency-like formation mechanism is analyzed based on the simulation curve and electric field distribution. In addition, the sensing properties of metamaterial are determined by simulation and calculation, and the refractive index sensitivities of the two windows can be as high as 451.92 GHz/RIU and 545.31 GHz/RIU under the optimal thickness of the measured substances. Through the sensing simulation of six petroleum products, it is verified that the dual-band has more excellent advantages in dielectric constant matching than the single frequency band. The characteristics of the designed metamaterial in the slow light effect are also studied. The maximum group delay times of the two windows can reach 9.98 ps and 6.23 ps. Therefore, the structure is considered to have an important application value in the field of high sensitivity sensors and slow light devices. -
Keywords:
- electromagnetically induced transparency-like /
- terahertz metamaterials /
- sensing characteristics /
- slow light characteristics
[1] Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[2] Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar
[3] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[4] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[5] Lin X Q, Chen Z, Yu J W, Liu P Q, Li P F, Chen Z Z 2016 IEEE Sens. J. 16 293Google Scholar
[6] Lin X Q, Peng J, Chen Z, Yu J W, Yang X F 2018 IEEE Sens. J. 18 9251Google Scholar
[7] Li H M, Liu S B, Liu S Y, Zhang H F 2014 Appl. Phys. Lett. 105 133514Google Scholar
[8] Zhang F L, He X, Zhou X, Zhou Y L, An S, Yu G Y, Pang L N 2013 Appl. Phys. Lett. 103 221904Google Scholar
[9] Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601Google Scholar
[10] Ma J Y, Qin J Y, Campbell G T, Lecamwasam R, Sripathy K, Hope J, Buchler B, Lam P K 2020 Sci. Adv. 6 eaax8256Google Scholar
[11] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar
[12] Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar
[13] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Opt. Express 17 5595Google Scholar
[14] Sun Y R, Chen H, Li X J, Hong Z 2017 Opt. Commun. 392 142Google Scholar
[15] Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271Google Scholar
[16] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[17] Hokmabadi M P, Kim J H, Rivera E, Kung P, Kim S M 2015 Sci. Rep. 5 14373Google Scholar
[18] Zheng S Q, Zhao Q X, Peng L, Jiang X 2021 Results Phys. 23 104040Google Scholar
[19] Zhang J J, Xiao S S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187Google Scholar
[20] Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar
[21] Tang B, Jia Z P, Huang L, Su J B, Jiang C 2021 IEEE J. Sel. Top. Quantum Electron. 27 4700406Google Scholar
[22] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar
[23] Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar
[24] Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar
[25] Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar
[26] Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539Google Scholar
[27] Liu T T, Wang H X, Liu Y, Xiao L S, Zhou C B, Liu Y B, Xu C, Xiao S Y 2018 J. Phys. D:Appl. Phys. 51 415105Google Scholar
[28] Devi K M, Chowdhury D R, Kumar G, Sarma A K 2018 J. Appl. Phys. 124 063106Google Scholar
[29] Zhu L, Meng F Y, Fu J H, Wu Q, Hua J 2012 Opt. Express 20 4494Google Scholar
[30] Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J. Lightwave Technol. 36 2083Google Scholar
[31] Kang M, Li Y N, Chen J, Chen J, Bai Q, Wang H T, Wu P H 2010 Appl. Phys. B 100 699Google Scholar
[32] Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar
[33] Zhang C, Liang L, Ding L, Jin B, Hou Y, Li C, Jiang L, Liu W, Hu W, Lu Y, Kang L, Xu W, Chen J, Wu P 2016 Appl. Phys. Lett. 108 241105Google Scholar
[34] Xie Q, Dong G X, Wang B X, Huang W Q 2018 Nanoscale Res. Lett. 13 2947Google Scholar
[35] Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar
[36] Chen T, Zhang D P, Huang F Y, Li Z, Hu F R 2020 Mater. Res. Express 7 095802Google Scholar
[37] Zhang X, Wang Y, Cui Z, Zhang X, Chen S, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar
[38] Liu T T, Zhou C B, Cheng L, Jiang X Y, Wang G Z, Xu C, Xiao S Y 2019 J. Opt. 21 035101Google Scholar
[39] Zhang Z, Yang J, Han Y, He X, Zhang J, Huang J, Chen D, Xu S, Xie W 2020 Appl. Phys. A 126 199Google Scholar
[40] Jiang J, Cui J, Fang R, Wu F, Yang Y 2020 Integr. Ferroelectr. 212 1Google Scholar
[41] Zeng F, Zhong M 2021 Opt. Mater. 111 110596Google Scholar
-
图 6 (a) 超材料表面覆盖不同被测物厚度对应的第一个EIT-like窗口的拟合灵敏度; (b) 超材料表面覆盖不同被测物厚度对应的第二个EIT-like窗口的拟合灵敏度; (c) 被测物质的厚度对灵敏度的影响
Fig. 6. (a) Fitting sensitivity of the first EIT-like window corresponding to different measured substances thickness covered on the surface of metamaterial; (b) fitting sensitivity of the second EIT-like window corresponding to different measured substances thickness covered on the surface of metamaterial; (c) influence of thickness of the measured substances on sensitivity.
表 1 超材料覆盖待测物的仿真和计算结果
Table 1. Simulation and calculation results of metamaterial covering the measured substances.
The measured substance ε Frequency shift
/GHzCalculated
εCalculated
average
εFirst Second First Second JP-4 1.7 133.85 171.83 1.68 1.73 1.705 Petroleum ether 1.8 152.73 188.22 1.79 1.81 1.8 90# 2.01 188.82 227.67 2.01 2.01 2.01 93# 2.11 201.44 248.53 2.09 2.12 2.105 Transmission oil 2.2 218.42 265.2 2.2 2.21 2.205 97# 2.25 222.98 270.68 2.23 2.24 2.235 表 2 各种超材料在传感和慢光方面性能的比较
Table 2. Comparison of sensing and slow light properties of various metamaterials.
-
[1] Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[2] Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar
[3] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[4] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[5] Lin X Q, Chen Z, Yu J W, Liu P Q, Li P F, Chen Z Z 2016 IEEE Sens. J. 16 293Google Scholar
[6] Lin X Q, Peng J, Chen Z, Yu J W, Yang X F 2018 IEEE Sens. J. 18 9251Google Scholar
[7] Li H M, Liu S B, Liu S Y, Zhang H F 2014 Appl. Phys. Lett. 105 133514Google Scholar
[8] Zhang F L, He X, Zhou X, Zhou Y L, An S, Yu G Y, Pang L N 2013 Appl. Phys. Lett. 103 221904Google Scholar
[9] Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601Google Scholar
[10] Ma J Y, Qin J Y, Campbell G T, Lecamwasam R, Sripathy K, Hope J, Buchler B, Lam P K 2020 Sci. Adv. 6 eaax8256Google Scholar
[11] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar
[12] Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar
[13] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Opt. Express 17 5595Google Scholar
[14] Sun Y R, Chen H, Li X J, Hong Z 2017 Opt. Commun. 392 142Google Scholar
[15] Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271Google Scholar
[16] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[17] Hokmabadi M P, Kim J H, Rivera E, Kung P, Kim S M 2015 Sci. Rep. 5 14373Google Scholar
[18] Zheng S Q, Zhao Q X, Peng L, Jiang X 2021 Results Phys. 23 104040Google Scholar
[19] Zhang J J, Xiao S S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187Google Scholar
[20] Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar
[21] Tang B, Jia Z P, Huang L, Su J B, Jiang C 2021 IEEE J. Sel. Top. Quantum Electron. 27 4700406Google Scholar
[22] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar
[23] Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar
[24] Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar
[25] Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar
[26] Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539Google Scholar
[27] Liu T T, Wang H X, Liu Y, Xiao L S, Zhou C B, Liu Y B, Xu C, Xiao S Y 2018 J. Phys. D:Appl. Phys. 51 415105Google Scholar
[28] Devi K M, Chowdhury D R, Kumar G, Sarma A K 2018 J. Appl. Phys. 124 063106Google Scholar
[29] Zhu L, Meng F Y, Fu J H, Wu Q, Hua J 2012 Opt. Express 20 4494Google Scholar
[30] Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J. Lightwave Technol. 36 2083Google Scholar
[31] Kang M, Li Y N, Chen J, Chen J, Bai Q, Wang H T, Wu P H 2010 Appl. Phys. B 100 699Google Scholar
[32] Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar
[33] Zhang C, Liang L, Ding L, Jin B, Hou Y, Li C, Jiang L, Liu W, Hu W, Lu Y, Kang L, Xu W, Chen J, Wu P 2016 Appl. Phys. Lett. 108 241105Google Scholar
[34] Xie Q, Dong G X, Wang B X, Huang W Q 2018 Nanoscale Res. Lett. 13 2947Google Scholar
[35] Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar
[36] Chen T, Zhang D P, Huang F Y, Li Z, Hu F R 2020 Mater. Res. Express 7 095802Google Scholar
[37] Zhang X, Wang Y, Cui Z, Zhang X, Chen S, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar
[38] Liu T T, Zhou C B, Cheng L, Jiang X Y, Wang G Z, Xu C, Xiao S Y 2019 J. Opt. 21 035101Google Scholar
[39] Zhang Z, Yang J, Han Y, He X, Zhang J, Huang J, Chen D, Xu S, Xie W 2020 Appl. Phys. A 126 199Google Scholar
[40] Jiang J, Cui J, Fang R, Wu F, Yang Y 2020 Integr. Ferroelectr. 212 1Google Scholar
[41] Zeng F, Zhong M 2021 Opt. Mater. 111 110596Google Scholar
计量
- 文章访问数: 5252
- PDF下载量: 161
- 被引次数: 0