搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维氟代苯甲胺钙钛矿结构和光电性能的理论研究

隋国民 严桂俊 杨光 张宝 冯亚青

引用本文:
Citation:

二维氟代苯甲胺钙钛矿结构和光电性能的理论研究

隋国民, 严桂俊, 杨光, 张宝, 冯亚青

Theoretical investigation on structure and optoelectronic performance of two-dimensional fluorbenzidine perovskites

Sui Guo-Min, Yan Gui-Jun, Yang Guang, Zhang Bao, Feng Ya-Qing
PDF
HTML
导出引用
  • 二维铅卤钙钛矿太阳能电池以其高稳定性等优良性质展现出重要的应用价值, 越来越多的二维铅卤钙钛矿材料被用作太阳能电池的光吸收层, 但是关于二维铅卤钙钛矿材料构效关系的理论研究十分匮乏. 本文以苯甲胺铅碘、邻氟苯甲胺铅碘和对氟苯甲胺铅碘二维钙钛矿为出发点, 通过第一性原理计算比较了它们的晶体结构、形成能、激子结合能、载流子迁移率以及对应器件的光电性能, 以考察不同间隔基阳离子对钙钛矿结构、性质以及光电器件性能的影响. 结果表明, 二维钙钛矿的形成能绝对值越大, 光电器件的稳定性越高; 钙钛矿的激子结合能越小, 光电器件的短路电流密度越大, 归纳总结出预测器件短路电流密度的关系式. 在间隔基末端使用吸电子基团修饰有望同时提高光电器件的寿命和短路电流密度. 本研究对于二维钙钛矿材料有机间隔阳离子的设计和筛选具有指导意义.
    Two-dimensional lead halide perovskite solar cell has shown great potential applications because of its relatively high stability in comparison with normal three-dimensional perovskite. More and more two-dimensional lead halide perovskites are used as absorbers in solar cells, but theoretical study on the structure-performance relationship of two-dimensional lead halide perovskites is still lacking. Therefore, starting form 3 kinds of fluorobenzylamine perovskites, first-principle calculations are carried out. By comparing their crystal structures, non-covalent interactions, formation energy, band structures, exciton binding energy, carrier mobilities of theses perovskites, and short-circuit current densities of their corresponding solar cells, the influences caused by organic spacers on the structural and electronic properties are studied. This research shows that the more negative the formation energy, the higher the stability of the optoelectronic device is, and the smaller the exciton binding energy, the larger the short-circuit current of the optoelectronic device is. A relationship for quantitative prediction of short-circuit current is proposed, and substitution with electron-withdrawing groups at the end of the spacer is expected to improve both the stability and short-circuit current density of optoelectronic device. The research results of this work can contribute to the design of new perovskite solar cells with high conversion efficiency.
      通信作者: 张宝, baozhang@tju.edu.cn ; 冯亚青, yqfeng@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB0408002)资助的课题.
      Corresponding author: Zhang Bao, baozhang@tju.edu.cn ; Feng Ya-Qing, yqfeng@tju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB0408002).
    [1]

    Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W 2020 Nat. Photonics 14 154Google Scholar

    [2]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [3]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [4]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [5]

    余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青 2021 物理学报 70 048503Google Scholar

    Yu Y, An Z D, Cai X Y, Guo M L, Jing C B, Li Y Q 2021 Acta Phys. Sin. 70 048503Google Scholar

    [6]

    Tan Z, Wu Y, Hong H, Yin J, Zhang J, Lin L, Wang M, Sun X, Sun L, Huang Y, Liu K, Liu Z, Peng H 2016 J. Am. Chem. Soc. 138 16612Google Scholar

    [7]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [8]

    Chen C, Zhang X, Wu G, Li H, Chen H 2017 Adv Opt. Mater. 5 1600539Google Scholar

    [9]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. Engl. 53 11232Google Scholar

    [10]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [11]

    Chen Y, Sun Y, Peng J, Zhang W, Su X, Zheng K, Pullerits T, Liang Z 2017 Adv. Energy Mater. 7 1700162Google Scholar

    [12]

    Slonopas A, Kaur B, Norris P 2017 Appl. Phys. Lett. 110 222905Google Scholar

    [13]

    Varadwaj P R, Varadwaj A, Marques H M, Yamashita K 2019 Sci. Rep. 9 50Google Scholar

    [14]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [15]

    Xu H, Jiang Y, He T, Li S, Wang H, Chen Y, Yuan M, Chen J 2019 Adv. Funct. Mater. 29 1807696Google Scholar

    [16]

    Proppe A H, Quintero-Bermudez R, Tan H, Voznyy O, Kelley S O, Sargent E H 2018 J. Am. Chem. Soc. 140 2890Google Scholar

    [17]

    Wang Z, Wei Q, Liu X, Liu L, Tang X, Guo J, Ren S, Xing G, Zhao D, Zheng Y 2021 Adv. Funct. Mater. 31 2008404Google Scholar

    [18]

    Fu W, Liu H, Shi X, Zuo L, Li X, Jen A K Y 2019 Adv. Funct. Mater. 29 1900221Google Scholar

    [19]

    Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar

    [20]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [21]

    Dong Y, Lu D, Xu Z, Lai H, Liu Y 2020 Adv. Energy Mater. 10 2000694Google Scholar

    [22]

    Li J, Yan K, Chen J, Zhang Y, Yang W, Lian X, Wu G, Chen H 2019 Org. Electron. 67 122Google Scholar

    [23]

    Passarelli J V, Fairfield D J, Sather N A, Hendricks M P, Sai H, Stern C L, Stupp S I 2018 J. Am. Chem. Soc. 140 7313Google Scholar

    [24]

    Xu Z, Lu D, Liu F, Lai H, Wan X, Zhang X, Liu Y, Chen Y 2020 ACS Nano 14 4871Google Scholar

    [25]

    Zhou Q, Xiong Q, Zhang Z, Hu J, Lin F, Liang L, Wu T, Wang X, Wu J, Zhang B, Gao P 2020 Solar RRL 4 2000107Google Scholar

    [26]

    Lei J H, Zhao Y Q, Tang Q, Lin J G, Cai M Q 2018 Phys. Chem. Chem. Phys. 20 13241Google Scholar

    [27]

    Wu L, Lu P, Li Y, Sun Y, Wong J, Yang K 2018 J. Mater. Chem. A 6 24389Google Scholar

    [28]

    Yan G, Sui G, Chen W, Su K, Feng Y, Zhang B 2022 Chem. Mater. 34 3346Google Scholar

    [29]

    Jung M H 2021 CrystEngComm 23 1181Google Scholar

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B:Condens. Matter 54 11169Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [33]

    Blochl P E 1994 Phys. Rev. B:Condens. Matter 50 17953Google Scholar

    [34]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [35]

    王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar

    Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar

    [36]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R 2013 Gaussian 09 Revision D.01 (Wallingford: Gaussian Inc)

    [37]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [38]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [39]

    Bardeen J, Shockley W 1950 Phy. Rev. 80 72Google Scholar

    [40]

    Franceschetti A, Wei S H, Zunger A 1995 Phys. Rev. B:Condens. Matter 52 13992Google Scholar

    [41]

    Jong U G, Yu C J, Ri J S, Kim N H, Ri G C 2016 Phys. Rev. B 94 125139Google Scholar

    [42]

    Baroni S, Resta R 1986 Phys. Rev. B: Condens. Matter 33 7017Google Scholar

  • 图 1  优化后的晶体结构图 (a) PMA2PbI4; (b) oFPMA2PbI4; (c), (d) pFPMA2PbI4

    Fig. 1.  The optimized crystal structures: (a) PMA2PbI4; (b) oFPMA2PbI4; (c), (d) pFPMA2PbI4.

    图 2  NCI等值面图. 蓝色和绿色的等值面分别代表强的和中等强度的弱相互作用, 红色等值面代表斥力 (a) PMA2PbI4; (b) oFPMA2PbI4; (c) pFPMA2PbI4

    Fig. 2.  Isosurface NCI plots of (a) PMA2PbI4, (b) oFPMA2PbI4 and (c) pFPMA2PbI4. The isosurfaces are coloured in blue, green and red. Blue and green isosurfaces represent strong and medium-to-weak interactions, while red represents repulsive interactions.

    图 3  能带结构图 (a) PMA2PbI4; (b) oFPMA2PbI4; (c) pFPMA2PbI4

    Fig. 3.  Band structures of (a) PMA2PbI4; (b) PEA2PbI4; (c) oFPEA2PbI4.

    表 1  氟苯甲胺钙钛矿晶格常数、Pb-I键键长和形成能

    Table 1.  Lattice constants, Pb-I bond lengths and formation energies of fluoroaniline perovskites.

    体系ab平均Pb—I键键长/Å形成能/(kJ·mol–1)
    PMA2PbI48.42[8.63]9.05[9.13]3.19[3.20]–332
    oFPMA2PbI48.38[8.70]8.94[9.16]3.17[3.21]–315
    pFPMA2PbI48.35[8.70]8.67[9.24]3.17[3.21]–338
    注: 方括号中为实验数据. 由图1可以看出, 三种钙钛矿具有相同的晶体结构, 其间隔基呈人字形排列, 氟化位置的改变并不影响间隔基的排列方式. 这一现象与氟苯乙胺钙钛矿有所不同, 在氟苯乙胺钙钛矿的实验中, 氟化位置的不同使间隔基呈现多种排列方式[19]. 造成这种区别的原因在于, 氟苯乙铵的苯环侧链长, 苯环可以旋转, 使间隔基具有多种排列方式. 而氟苯甲铵的侧链短, 苯环的旋转受到了甲铵基的限制, 由于甲铵基朝向[PbI6]4-无机八面体赤道面的I原子, 因此氟苯甲铵的位置和取向不能够轻易发生变动, 使得氟化位置无法改变间隔基的排列方式. 此外, 由于苯环侧链长度的差异, 氟苯乙铵中的苯环趴伏在无机八面体上, 而氟苯甲铵中的苯环几乎直立在无机八面体的空隙中, 缺乏苯环与I原子的相互作用, 使得氟苯甲胺钙钛矿的稳定性逊色于氟苯乙胺钙钛矿, 但间隔基排列方式的固定避免了氟苯甲胺钙钛矿产生间隔基取向紊乱的现象[19], 从而确保其光电性能.
    下载: 导出CSV

    表 2  氟苯甲胺钙钛矿激子结合能、载流子折合质量、介电常数以及对应器件的短路电流密度

    Table 2.  The calculated exciton binding energies, carrier-reduced masses, dielectric constants of fluoroaniline perovskites and short circuit current densities of the corresponding devices.

    体系激子结合能/meV载流子折合质量/m0介电常数短路电流密度/(mA·cm–2)
    PMA2PbI42540.1102.4215.64
    oFPMA2PbI42600.1142.4312.79
    pFPMA2PbI42280.1142.6017.84
    下载: 导出CSV

    表 3  氟苯甲胺钙钛矿的载流子迁移率

    Table 3.  The calculated carrier mobilities of fluoroaniline perovskites.

    体系电子/空穴迁移率
    /(cm2·V–1·s–1)
    平均电子迁移率/(cm2·V–1·s–1)
    [1 0 0][0 1 0]
    PMA2PbI41798/112138/117256
    oFPMA2PbI42152/107121/123229
    pFPMA2PbI46054/14760/107119
    注: 使用调和平均数计算平均电子迁移率.
    下载: 导出CSV

    表 4  回归结果

    Table 4.  Regression results.

    参数回归系数标准差t检验 p F检验 p
    a677.10.0030.0096
    b–0.230.0330.006
    c0.190.0510.032
    下载: 导出CSV

    表 A1  氟苯甲胺钙钛矿的晶格常数和空间群

    Table A1.  The lattice constants and space groups of fluoroaniline perovskites.

    体系abcα/(°)β/(°)γ/(°)V3空间群
    PMA2PbI48.42169.045835.498890.000090.287990.00002704.3P1
    oFPMA2PbI48.37988.935735.791390.000191.125590.00002679.5P1
    pFPMA2PbI48.35438.666832.123090.016594.266989.99902319.4P1
    下载: 导出CSV

    表 A2  PMA2PbI4的原子坐标

    Table A2.  Coordinates of atoms within PMA2PbI4.

    原子xyz原子xyz
    C10.517170.554890.58411H140.94060.18110.42597
    C20.553660.5180.62436H150.900450.051080.46057
    C30.66660.409720.63252H160.803010.045950.4208
    C40.700920.373030.66976H170.289470.210970.3243
    C50.508740.55230.69118H180.947370.891280.28593
    C60.622020.444570.6991H190.14940.083410.27174
    C70.474530.589090.65387H200.887190.825660.35248
    C80.017170.945110.41589H210.384060.450230.4338
    C90.053660.9820.37564H220.533830.327530.41889
    C100.16660.090280.36748H230.27110.644920.39045
    C110.200920.126970.33024H240.55940.68110.42597
    C120.008740.94770.30882H250.599550.551080.46057
    C130.122020.055430.3009H260.696990.545950.4208
    C140.974530.910910.34613H270.210530.710970.3243
    C150.482830.445110.41589H280.552630.391280.28593
    C160.446340.4820.37564H290.35060.583410.27174
    C170.33340.590280.36748H300.612810.325660.35248
    C180.299080.626970.33024H310.884060.049770.5662
    C190.491260.44770.30882H320.033830.172470.58111
    C200.377980.555430.3009H330.77110.855080.60955
    C210.525470.410910.34613H340.05940.81890.57403
    C220.982830.054890.58411H350.099550.948920.53943
    C230.946340.0180.62436H360.196990.954050.5792
    C240.83340.909720.63252H370.710530.789030.6757
    C250.799080.873030.66976H380.052630.108720.71407
    C260.991260.05230.69118H390.85060.916590.72826
    C270.877980.944570.6991H400.112810.174340.64752
    C280.025470.089090.65387I10.041890.525350.59029
    H10.615940.549770.5662I20.20090.194170.49275
    H20.466170.672470.58111I30.541890.974650.40971
    H30.72890.355080.60955I40.70090.305830.50725
    H40.44060.31890.57403I50.958110.474650.40971
    H50.400450.448920.53943I60.79910.805830.50725
    H60.303010.454050.5792I70.458110.025350.59029
    H70.789470.289030.6757I80.29910.694170.49275
    H80.447370.608720.71407N10.409690.4360.5683
    H90.64940.416590.72826N20.909690.0640.4317
    H100.387190.674340.64752N30.590310.5640.4317
    H110.115940.950230.4338N40.090310.9360.5683
    H120.966170.827530.41889Pb100.50.5
    H130.22890.144920.39045Pb20.500.5
    下载: 导出CSV

    表 A3  oFPMA2PbI4的原子坐标

    Table A3.  Coordinates of atoms within oFPMA2PbI4.

    原子xyz原子xyz
    C10.972720.421860.34429H140.479910.167510.58306
    C20.002620.451290.30696H150.623680.030740.56934
    C30.119330.555450.29847H160.400040.948590.54165
    C40.203080.628290.327H170.299850.957550.58088
    C50.17080.595650.36416H180.433150.814150.57534
    C60.055350.49060.37357H190.065060.607010.71463
    C70.022510.454220.41357H200.855220.42040.73068
    C80.472720.078140.65571H210.70640.289850.67958
    C90.502630.048710.69304H220.763210.349380.61344
    C100.619330.944550.70153H230.02010.667510.58306
    C110.703080.871710.673H240.876320.530750.56934
    C120.67080.904350.63584H250.099960.448590.54165
    C130.555350.00940.62643H260.200150.457550.58088
    C140.522520.045780.58643H270.066850.314150.57534
    C150.027280.578140.65571H280.565060.892990.28537
    C160.997380.548710.69304H290.355220.07960.26932
    C170.880670.444550.70153H300.20640.210150.32042
    C180.796920.371710.673H310.263210.150620.38656
    C190.82920.404350.63584H320.52010.832490.41694
    C200.944650.50940.62643H330.376320.969250.43066
    C210.977490.545780.58643H340.599970.051410.45835
    C220.527280.921860.34429H350.700150.042450.41912
    C230.497380.951290.30696H360.566850.185850.42466
    C240.380670.055450.29847F10.857860.321180.35266
    C250.296920.128290.327F20.357860.178820.64734
    C260.32920.095650.36416F30.142140.678820.64734
    C270.444650.99060.37357F40.642140.821180.35266
    C280.477490.954220.41357I10.530330.474360.41067
    H10.934940.392990.28537I20.307290.185520.49512
    H20.144780.57960.26932I30.030330.025640.58933
    H30.29360.710150.32042I40.807290.314480.50488
    H40.236790.650620.38656I50.469670.525640.58933
    H50.97990.332490.41694I60.692710.814480.50488
    H60.123680.469250.43066I70.969670.974360.41067
    H70.900040.551410.45835I80.192710.685520.49512
    H80.799850.542450.41912N10.907270.566110.42973
    H90.933150.685850.42466N20.407270.93390.57027
    H100.434940.107010.71463N30.092730.433890.57027
    H110.644780.92040.73068N40.592730.066110.42973
    H120.79360.789850.67958Pb10.50.50.5
    H130.736790.849380.61344Pb2000.5
    下载: 导出CSV

    表 A4  pFPMA2PbI4的原子坐标

    Table A4.  Coordinates of atoms within pFPMA2PbI4.

    原子xyz原子xyz
    I10.439980.493290.60085H240.2220.918480.25715
    I20.070980.336450.49607H250.172570.902580.33308
    I30.351630.544780.3987H260.205980.026540.40327
    I40.719780.699410.50336H270.358860.167740.41412
    I50.850830.993280.39911H280.930790.604330.44934
    I60.220030.836350.50392H290.914730.712940.40637
    I70.939370.044870.60125H300.060.576210.41199
    I80.571280.199340.49664H310.66960.630410.33122
    Pb10.395660.517850.49982H320.720930.602660.25562
    Pb20.895440.017890.50014H330.088740.266130.28799
    F10.85740.599290.77335H340.037490.29310.36323
    F20.353790.919580.77233H350.848620.375880.41492
    F30.433290.098670.22666H360.704620.524020.40267
    F40.935240.41960.22759C10.937880.573120.6482
    N10.852830.437860.58256C20.822550.6750.66192
    N20.350460.101080.58261C30.794490.685040.70405
    N30.437980.937890.41745C40.884140.591050.73208
    N40.940710.601220.41737C51.000480.48920.71972
    H10.864870.43420.55066C60.026740.480970.67738
    H20.732340.459310.58741C70.961410.559530.60253
    H30.881690.327250.59393C80.43890.964530.64786
    H40.754070.747960.63941C90.527990.051260.67825
    H50.705140.763880.71502C100.500170.036610.72038
    H60.068460.418760.74288C110.38190.934180.73127
    H70.117910.402510.66695C120.291660.84570.70198
    H80.084820.526480.59676C130.321540.861870.66012
    H90.931990.66770.5859C140.464570.983780.60245
    H100.360720.104140.55065C150.352860.0730.35181
    H110.376350.212810.59363C160.468340.174660.33809
    H120.23110.076120.58791C170.496380.184510.29595
    H130.62060.130350.66896C180.406570.090570.26793
    H140.568370.102660.7445C190.290090.988930.2803
    H150.200740.766230.71181C200.263850.980870.32265
    H160.252910.79310.63663C210.329390.059540.39749
    H170.442510.875720.58511C220.851490.46460.35216
    H180.586430.023840.59748C230.762070.551310.32184
    H190.425960.934250.44934C240.789390.536610.27967
    H200.558460.959340.41259C250.90750.434170.26868
    H210.409130.827270.40607C260.998010.345660.2979
    H220.536940.247590.36059C270.968630.361870.3398
    H230.585850.263180.28498C280.826370.483920.3976
    下载: 导出CSV
  • [1]

    Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W 2020 Nat. Photonics 14 154Google Scholar

    [2]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [3]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [4]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [5]

    余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青 2021 物理学报 70 048503Google Scholar

    Yu Y, An Z D, Cai X Y, Guo M L, Jing C B, Li Y Q 2021 Acta Phys. Sin. 70 048503Google Scholar

    [6]

    Tan Z, Wu Y, Hong H, Yin J, Zhang J, Lin L, Wang M, Sun X, Sun L, Huang Y, Liu K, Liu Z, Peng H 2016 J. Am. Chem. Soc. 138 16612Google Scholar

    [7]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [8]

    Chen C, Zhang X, Wu G, Li H, Chen H 2017 Adv Opt. Mater. 5 1600539Google Scholar

    [9]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. Engl. 53 11232Google Scholar

    [10]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [11]

    Chen Y, Sun Y, Peng J, Zhang W, Su X, Zheng K, Pullerits T, Liang Z 2017 Adv. Energy Mater. 7 1700162Google Scholar

    [12]

    Slonopas A, Kaur B, Norris P 2017 Appl. Phys. Lett. 110 222905Google Scholar

    [13]

    Varadwaj P R, Varadwaj A, Marques H M, Yamashita K 2019 Sci. Rep. 9 50Google Scholar

    [14]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [15]

    Xu H, Jiang Y, He T, Li S, Wang H, Chen Y, Yuan M, Chen J 2019 Adv. Funct. Mater. 29 1807696Google Scholar

    [16]

    Proppe A H, Quintero-Bermudez R, Tan H, Voznyy O, Kelley S O, Sargent E H 2018 J. Am. Chem. Soc. 140 2890Google Scholar

    [17]

    Wang Z, Wei Q, Liu X, Liu L, Tang X, Guo J, Ren S, Xing G, Zhao D, Zheng Y 2021 Adv. Funct. Mater. 31 2008404Google Scholar

    [18]

    Fu W, Liu H, Shi X, Zuo L, Li X, Jen A K Y 2019 Adv. Funct. Mater. 29 1900221Google Scholar

    [19]

    Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar

    [20]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [21]

    Dong Y, Lu D, Xu Z, Lai H, Liu Y 2020 Adv. Energy Mater. 10 2000694Google Scholar

    [22]

    Li J, Yan K, Chen J, Zhang Y, Yang W, Lian X, Wu G, Chen H 2019 Org. Electron. 67 122Google Scholar

    [23]

    Passarelli J V, Fairfield D J, Sather N A, Hendricks M P, Sai H, Stern C L, Stupp S I 2018 J. Am. Chem. Soc. 140 7313Google Scholar

    [24]

    Xu Z, Lu D, Liu F, Lai H, Wan X, Zhang X, Liu Y, Chen Y 2020 ACS Nano 14 4871Google Scholar

    [25]

    Zhou Q, Xiong Q, Zhang Z, Hu J, Lin F, Liang L, Wu T, Wang X, Wu J, Zhang B, Gao P 2020 Solar RRL 4 2000107Google Scholar

    [26]

    Lei J H, Zhao Y Q, Tang Q, Lin J G, Cai M Q 2018 Phys. Chem. Chem. Phys. 20 13241Google Scholar

    [27]

    Wu L, Lu P, Li Y, Sun Y, Wong J, Yang K 2018 J. Mater. Chem. A 6 24389Google Scholar

    [28]

    Yan G, Sui G, Chen W, Su K, Feng Y, Zhang B 2022 Chem. Mater. 34 3346Google Scholar

    [29]

    Jung M H 2021 CrystEngComm 23 1181Google Scholar

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B:Condens. Matter 54 11169Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [33]

    Blochl P E 1994 Phys. Rev. B:Condens. Matter 50 17953Google Scholar

    [34]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [35]

    王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar

    Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar

    [36]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R 2013 Gaussian 09 Revision D.01 (Wallingford: Gaussian Inc)

    [37]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [38]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [39]

    Bardeen J, Shockley W 1950 Phy. Rev. 80 72Google Scholar

    [40]

    Franceschetti A, Wei S H, Zunger A 1995 Phys. Rev. B:Condens. Matter 52 13992Google Scholar

    [41]

    Jong U G, Yu C J, Ri J S, Kim N H, Ri G C 2016 Phys. Rev. B 94 125139Google Scholar

    [42]

    Baroni S, Resta R 1986 Phys. Rev. B: Condens. Matter 33 7017Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [15] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  4134
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-05-18
  • 上网日期:  2022-10-13
  • 刊出日期:  2022-10-20

/

返回文章
返回