-
过渡金属硫族化合物(TMDCs)材料具有优异的电学和光电性能, 在下一代光电子器件中具有广阔的应用前景. 然而, 大面积均匀生长单层的TMDCs仍然具有相当大的挑战. 本工作提出了一种简单而有效的利用化学气相沉积(CVD)制备大面积单层二硫化钼(MoS2)的方法, 并通过调整氧化物前驱体的比例, 调整MoS2单晶/薄膜生长. 随后, 利用叉指电极掩膜板制备出单层MoS2薄膜光电探测器. 最后, 在405 nm激光激发下, 不同电压和不同激光功率条件下均表现出高稳定和可重复的光电响应, 响应时间可达毫秒(ms)量级. 此外, 该光电探测器实现了405—830 nm的可见光到近红外的宽光谱检测范围, 光响应度(R)高达291.7 mA/W, 光探测率(D* )最高达1.629 × 109 Jones. 基于该CVD制备的单层MoS2薄膜光电探测器具有成本低、能大规模制备, 且在可见光到近红外的宽光谱范围内具有良好的稳定性和重复性的优点, 为未来电子和光电子器件的应用提供了更多的可能性.Transition metal dichalcogenide (TMDC) monolayers exhibit enhanced electrical and optoelectrical properties, which are promising for next-generation optoelectronic devices. However, large-scale and uniform growth of TMDC monolayers with large grain size is still a considerable challenge. Presented in this work is a simple and effective approach to fabricating largescale molybdenum (MoS2) disulfide monolayers by chemical vapor deposition (CVD) method. It is found that MoS2 grows from single crystal into thin film with the increase of oxide precursor proportion. The photodetector of large scale monolayer layer MoS2 film is fabricated by depositing metal electrodes on the interdigital electrode mask through using thermal evaporation coating. Finally, the highly stable and repeatable photoelectric responses under the conditions of different voltages and different laser power are characterized under 405-nm laser excitation, with response time decreasing down to the order of milliseconds (ms). In addition, the photodetector achieves a wide spectral detection range from 405 nm to 830 nm, that is, from visible light to near-infrared light wavelength range, with optical response (R) of 291.7 mA/W and optical detection rate (D*) of 1.629×109 Jones. The monolayer MoS2 thin film photodetector demonstrated here has the advantages of low cost, feasibility of large-scale preparation, and good stability and repeatability in the wide spectrum range from visible light to near infrared light wavelength, providing the possibilities for future applications of electronic and optoelectronic devices .
-
Keywords:
- MoS2 /
- chemical vapor deposition /
- photodetector /
- photoelectric response
[1] Gao G Y, Yu J, Yang X X, Pang Y K, Zhao J, Pan C F, Sun Q J, Wang Z L 2018 Adv. Mater. 31 1806905
[2] Li X F, Yang L M, Si M W, Li S C, Huang M Q, Ye P D, Wu Y Q 2015 Adv. Mater. 27 1547Google Scholar
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[4] Kaushik V, Ahmad M, Agarwal K, Varandani D, Belle B D, Das P, Mehta B R 2020 J. Phys. Chem. C 124 23368Google Scholar
[5] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P, Reed R C 2017 Acta Mater. 125 156Google Scholar
[6] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[7] Huang Z Z, Zhang T F, Liu J K, Zhang L H, Jin Y H, Wang J P, Jiang K, Fan S, Li Q Q 2019 ACS Appl. Electron. Mater. 1 1314Google Scholar
[8] Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar
[9] Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar
[10] Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S, Cho J H 2016 Adv. Mater. 28 9196Google Scholar
[11] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar
[12] Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, Hu W D 2021 Nat. Electron. 4 357Google Scholar
[13] Wu P S, Ye L, Tong L, Wang P, Wang Y, Wang H L, Ge H N, Wang Z, Gu Y, Zhang K, Yu Y Y, Peng M, Wang F, Huang M, Zhou P, Hu W D 2022 Light Sci. Appl. 11 6Google Scholar
[14] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar
[15] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar
[16] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[17] Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar
[18] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[19] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar
[20] Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar
[21] Ren S, Rong P, Yu Q 2018 Ceramics Int. 44 11940Google Scholar
[22] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C 2014 Nano Lett. 14 3987Google Scholar
[23] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[24] Sharma M, Singh A, Aggarwal P, Singh R 2022 ACS Omega 7 11731Google Scholar
[25] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T 2017 J. Am. Chem. Soc. 139 9392Google Scholar
[26] Lee C H, Zhang Y, Johnson J M, Koltun R, Gambin V, Jamison J S, Myers R C, Hwang J, Rajan S 2020 Appl. Phys. Lett. 117 123102Google Scholar
[27] Jie W J, Yang Z B, Zhang F, Bai G X, Leung C W, Hao J H 2017 ACS Nano 11 6950Google Scholar
[28] Kodu M, Avarmaa T, Jaaniso R, Leemets K, Mändar H, Nagirnyi V 2016 Superlattices Microstruct. 98 18Google Scholar
[29] Wang J, Fan L, Wang X M, Xiao T T, Peng L P, Wang X M, Yu J, Cao L H, Xiong Z W, Fu Y J, Wang C B, Shen Q, Wu W D 2019 Appl. Surf. Sci. 494 651Google Scholar
[30] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar
[31] Hu S, Wang X F, Meng L, Yan X 2017 J. Mater. Sci. 52 7215Google Scholar
[32] Liu P Y, Luo T, Xing J, Xu H, Hao H Y, Liu H, Dong J J 2017 Nanoscale Res. Lett. 12 558Google Scholar
[33] Li M G, Yao J D, Wu X X, Zhang S C, Xing B R, Niu X Y, Yan X Y, Yu Y, Liu Y L, Wang Y W 2020 ACS Appl. Mater. Interfaces 12 6276Google Scholar
[34] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar
[35] Zhang Z W, Huang Z W, Li J, Wang D, Lin Y, Yang X D, Liu H, Liu S, Wang Y L, Li B, Duan X F, Duan X D 2022 Nat. Nanotechnol. 17 493Google Scholar
[36] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[37] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar
[38] Di Bartolomeo A, Genovese L, Foller T, Giubileo F, Luongo G, Croin L, Liang S J, Ang L K, Schleberger M 2017 Nanotechnology 28 214002Google Scholar
[39] Nie C B, Yu L Y, Wei X Z, Shen J, Lu W Q, Chen W M, Feng S L, Shi H F 2017 Nanotechnology 28 275203Google Scholar
[40] Han P, St Marie L, Wang Q X, Quirk N, El Fatimy A, Ishigami M, Barbara P 2018 Nanotechnology 29 20LT01Google Scholar
[41] Pak Y, Park W, Mitra S, Sasikala Devi A A, Loganathan K, Kumaresan Y, Kim Y, Cho B, Jung G Y, Hussain M M, Roqan I S 2018 Small 14 201703176
[42] Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar
[43] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302Google Scholar
[44] Li Y N, Li L N, Li S S, Sun J Y, Fang Y, Deng T 2022 ACS Omega 7 13615Google Scholar
[45] Zhao T G, Guo J X, Li T T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y Y, Xu T F, Xie R Z, Gao P Q, Wang X R, Hu W D 2023 Chem. Soc. Rev. 52 1650Google Scholar
[46] Suleman M, Lee S, Kim M, Nguyen V H, Riaz M, Nasir N, Kumar S, Park H M, Jung J, Seo Y 2022 ACS Omega 7 30074Google Scholar
[47] Sun P, Liu Y W, Ma J, Li W, Zhang K L, Yuan Y J 2019 CrystEngComm 21 6969Google Scholar
[48] Zhao T G, Zhong F, Wang S C, Wang Y K, Xu T F, Chen Y, Yu Y Y, Guo J X, Wang Z, Yu J C, Gao P Q 2022 Adv. Opt. Mater. 11 2202208
[49] Sinha S, Kumar S, Arora SK, Sharma A, Tomar M, Wu H C, Gupta V 2021 J. Appl. Phys. 129 155304Google Scholar
-
图 2 (a)—(d)不同MoO3前驱体量下制备的MoS2的SEM形貌; (e) MoS2覆盖率随前驱体量的变化曲线; (f) MoS2的AFM照片(插图)和图中黑线高度随位置的变化曲线
Fig. 2. (a)–(d) SEM morphologies of MoS2 prepared under different volumes of MoO3 precursor; (e) curve of MoS2 coverage with precursor volume; (f) the height of MoS2 as a function of position marked as black line in the inset, inset is AFM photograph of MoS2.
图 3 (a) MoS2单晶光学显微镜图像; (b)单晶MoS2的拉曼成像; (c) Si/SiO2基底拉曼成像; (d)对应图(a)中各点的拉曼光谱; (e) MoS2薄膜的光学显微镜图像; (f) MoS2薄膜的拉曼成像; (g) Si/SiO2基底拉曼成像; (h)图(e)各点对应的拉曼光谱
Fig. 3. (a) Optical microscope image of single crystal MoS2; (b) Raman mapping of single crystal MoS2; (c) Raman mapping of Si/SiO2 substrate; (d) Raman spectra of each point in Fig. (a); (e) optical microscope image of thin film MoS2; (f) Raman mapping of thin film MoS2; (g) Raman mapping of Si/SiO2 substrate; (h) Raman spectra of each point in Fig. (e).
图 5 不同电压(a)和光功率(b)条件的电流随时间变化关系; 光电探测器件的响应度和探测率随波长(c)和光功率(d)的变化关系; 器件的响应上升时间(e)和下降恢复时间(f)
Fig. 5. The relation of current with time under different voltage conditions (a) and different optical power conditions (b); the relationship between the responsivity and the detection rate of the photodetector with wavelength (c) and with optical power (d); the rise time (e) and the recovery time (f) of the photodetector.
-
[1] Gao G Y, Yu J, Yang X X, Pang Y K, Zhao J, Pan C F, Sun Q J, Wang Z L 2018 Adv. Mater. 31 1806905
[2] Li X F, Yang L M, Si M W, Li S C, Huang M Q, Ye P D, Wu Y Q 2015 Adv. Mater. 27 1547Google Scholar
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[4] Kaushik V, Ahmad M, Agarwal K, Varandani D, Belle B D, Das P, Mehta B R 2020 J. Phys. Chem. C 124 23368Google Scholar
[5] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P, Reed R C 2017 Acta Mater. 125 156Google Scholar
[6] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[7] Huang Z Z, Zhang T F, Liu J K, Zhang L H, Jin Y H, Wang J P, Jiang K, Fan S, Li Q Q 2019 ACS Appl. Electron. Mater. 1 1314Google Scholar
[8] Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar
[9] Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar
[10] Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S, Cho J H 2016 Adv. Mater. 28 9196Google Scholar
[11] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar
[12] Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, Hu W D 2021 Nat. Electron. 4 357Google Scholar
[13] Wu P S, Ye L, Tong L, Wang P, Wang Y, Wang H L, Ge H N, Wang Z, Gu Y, Zhang K, Yu Y Y, Peng M, Wang F, Huang M, Zhou P, Hu W D 2022 Light Sci. Appl. 11 6Google Scholar
[14] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar
[15] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar
[16] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[17] Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar
[18] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[19] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar
[20] Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar
[21] Ren S, Rong P, Yu Q 2018 Ceramics Int. 44 11940Google Scholar
[22] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C 2014 Nano Lett. 14 3987Google Scholar
[23] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[24] Sharma M, Singh A, Aggarwal P, Singh R 2022 ACS Omega 7 11731Google Scholar
[25] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T 2017 J. Am. Chem. Soc. 139 9392Google Scholar
[26] Lee C H, Zhang Y, Johnson J M, Koltun R, Gambin V, Jamison J S, Myers R C, Hwang J, Rajan S 2020 Appl. Phys. Lett. 117 123102Google Scholar
[27] Jie W J, Yang Z B, Zhang F, Bai G X, Leung C W, Hao J H 2017 ACS Nano 11 6950Google Scholar
[28] Kodu M, Avarmaa T, Jaaniso R, Leemets K, Mändar H, Nagirnyi V 2016 Superlattices Microstruct. 98 18Google Scholar
[29] Wang J, Fan L, Wang X M, Xiao T T, Peng L P, Wang X M, Yu J, Cao L H, Xiong Z W, Fu Y J, Wang C B, Shen Q, Wu W D 2019 Appl. Surf. Sci. 494 651Google Scholar
[30] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar
[31] Hu S, Wang X F, Meng L, Yan X 2017 J. Mater. Sci. 52 7215Google Scholar
[32] Liu P Y, Luo T, Xing J, Xu H, Hao H Y, Liu H, Dong J J 2017 Nanoscale Res. Lett. 12 558Google Scholar
[33] Li M G, Yao J D, Wu X X, Zhang S C, Xing B R, Niu X Y, Yan X Y, Yu Y, Liu Y L, Wang Y W 2020 ACS Appl. Mater. Interfaces 12 6276Google Scholar
[34] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar
[35] Zhang Z W, Huang Z W, Li J, Wang D, Lin Y, Yang X D, Liu H, Liu S, Wang Y L, Li B, Duan X F, Duan X D 2022 Nat. Nanotechnol. 17 493Google Scholar
[36] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[37] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar
[38] Di Bartolomeo A, Genovese L, Foller T, Giubileo F, Luongo G, Croin L, Liang S J, Ang L K, Schleberger M 2017 Nanotechnology 28 214002Google Scholar
[39] Nie C B, Yu L Y, Wei X Z, Shen J, Lu W Q, Chen W M, Feng S L, Shi H F 2017 Nanotechnology 28 275203Google Scholar
[40] Han P, St Marie L, Wang Q X, Quirk N, El Fatimy A, Ishigami M, Barbara P 2018 Nanotechnology 29 20LT01Google Scholar
[41] Pak Y, Park W, Mitra S, Sasikala Devi A A, Loganathan K, Kumaresan Y, Kim Y, Cho B, Jung G Y, Hussain M M, Roqan I S 2018 Small 14 201703176
[42] Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar
[43] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302Google Scholar
[44] Li Y N, Li L N, Li S S, Sun J Y, Fang Y, Deng T 2022 ACS Omega 7 13615Google Scholar
[45] Zhao T G, Guo J X, Li T T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y Y, Xu T F, Xie R Z, Gao P Q, Wang X R, Hu W D 2023 Chem. Soc. Rev. 52 1650Google Scholar
[46] Suleman M, Lee S, Kim M, Nguyen V H, Riaz M, Nasir N, Kumar S, Park H M, Jung J, Seo Y 2022 ACS Omega 7 30074Google Scholar
[47] Sun P, Liu Y W, Ma J, Li W, Zhang K L, Yuan Y J 2019 CrystEngComm 21 6969Google Scholar
[48] Zhao T G, Zhong F, Wang S C, Wang Y K, Xu T F, Chen Y, Yu Y Y, Guo J X, Wang Z, Yu J C, Gao P Q 2022 Adv. Opt. Mater. 11 2202208
[49] Sinha S, Kumar S, Arora SK, Sharma A, Tomar M, Wu H C, Gupta V 2021 J. Appl. Phys. 129 155304Google Scholar
计量
- 文章访问数: 4408
- PDF下载量: 105
- 被引次数: 0