搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性

徐洁 冯泽华 刘冰野 朱欣怡 代锦飞 董化 吴朝新

引用本文:
Citation:

聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性

徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新

Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern

Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin
PDF
HTML
导出引用
  • 传统的高效率钙钛矿太阳能电池, 需要在具有氮气保护的严苛条件下方可实现. 高湿度(55%)空气环境中, 大面积钙钛矿成膜工艺开发及器件结构优化对模组器件效率和稳定性的提高至关重要. 本工作采用一种真空抽气萃取方法在空气中实现了高质量钙钛矿薄膜的制备, 并研究了双端可低温光聚合单体分子对钙钛矿薄膜内封装的可行性. 研究发现, 当抽气时间为60 s, 在空气中可以形成均匀、致密的钙钛矿薄膜. 通过调控单体分子浓度, 能够在内封装的同时, 实现对钙钛矿表面缺陷的钝化, 当浓度为1 mg/mL时, 对应钙钛矿薄膜的形貌及荧光强度达到最优. 最终, 基于聚合物内封装修饰的刚性和柔性模组(有效面积: 18 cm2)器件分别实现了19.51%和18.17%的室外光电转化效率(34.5%和30.2%的室内弱光转化效率). 此外, 聚合物内封装提升器件湿度稳定性及抑制铅泄漏的同时, 也显著提升了柔性模组的耐弯折稳定性. 聚合物内封装技术为未来大面积模组器件的发展及进一步产业应用提供了新的方向和可能.
    The preparation of traditional organic-inorganic lead-halogen hybrid perovskite solar cells often requires strict nitrogen glove box conditions, thus hindering their industrial scalability. This study develops a large-area perovskite film formation process and designs a novel device structure to achieve a dual enhancement of module device efficiency and stability in a high humidity air environment (55%). High-quality perovskite thin films are successfully prepared by vacuum extraction in ambient air, followed by a double-end low-temperature photopolymerization process utilizing acrylate monomer molecules for inner encapsulation modification of the freshly formed perovskite thin films. The influences of these techniques on the photoelectric characteristics of perovskite thin films and devices are investigated. The results indicate that uniform and dense perovskite films can be achieved in ambient air with a pumping time of 60 s. By adjusting the concentration of ethylene glycol dimethacrylate monomer molecules used in the low-temperature photopolymerization process, the surface defects on the perovskite film can be effectively controlled. The optimal concentration of 1 mg/mL results in perovskite film with optimal morphology and fluorescence intensity. Furthermore, rigid module device and flexible module device (effective area: 18 cm²), based on the polymer inner encapsulation, demonstrate outstanding outdoor photoelectric conversion efficiencies of 19.51% and 18.17%, respectively (with the highest indoor low-light conversion efficiencies of 34.5% and 30.2%, respectively). Notably, the untreated flexible device exhibits a significant decline in photoelectric conversion efficiency, falling below 50% of the initial value after one month of exposure to air. In contrast, device incorporating the polymer inner encapsulation layer maintains over 90% of their original efficiency, highlighting their excellent humidity resistance stability. Moreover, the polymer encapsulation layer also greatly improves the bending stability of the flexible device. This research paves the way for industrial-scale producing perovskite solar cells and addressing the challenges associated with humidity and large-area fabrication. The findings contribute to advancing perovskite solar cell technology and offering a pathway for high-efficiency and stable devices suitable for practical applications.
      通信作者: 徐洁, jiexu@xauat.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号: 2023-JC-QN-0693)、国家自然科学基金(批准号: 12004298)、中国博士后科学基金(批准号: 2020M673399)和西安建筑科技大学大学生创新创业训练计划(批准号: X2023110)的课题.
      Corresponding author: Xu Jie, jiexu@xauat.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2023-JC-QN-0693), the National Natural Science Foundation of China (Grant No. 12004298), the China Postdoctoral Science Foundation (Grant No. 2020M673399), and the Innovation and Entrepreneurship Training Program for College Students of Xi’an University of Architecture and Technology, China (Grant No. X2023110).
    [1]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [2]

    Wolf S D, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [5]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H 2013 Adv. Mater. 25 3227Google Scholar

    [6]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html

    [7]

    Ding Y, Ding B, Kanda H, Usiobo O J, Gallet T, Yang Z H, Liu Y, Huang H, Sheng J, Liu C, Yang Y, Queloz V I E, Zhang X F, Audinot J N, Redinger A, Dang W, Mosconic E, Luo W, Angelis F D, Wang M K, Dörflinger P, Armer M, Schmid V, Wang R, Brooks K G, Wu J H, Dyakonov V, Yang G J, Dai S Y, Dyson P J, Nazeeruddin M K 2022 Nat. Nanotechnol. 17 598Google Scholar

    [8]

    Rana P J S, Febriansyah B, Koh T M, Muhammad B T, Salim T, Hooper T J N, Kanwat A, Ghosh B, Kajal P, Lew J H, Aw Y C, Yantara N, Bruno A, Pullarkat S A, Ager J W, Leong W L, Mhaisalkar S G, Mathews N 2022 Adv. Funct. Mater. 32 2113026Google Scholar

    [9]

    Wang Y, Yang H, Zhang K, Tao M Q, Li M Z, Song Y L 2022 ACS Energy Lett. 7 3646Google Scholar

    [10]

    Zhang K, Wang Y, Tao M Q, Guo L T, Yang Y R, Shao J Y, Zhang Y Y, Wang F Y, Song Y L 2023 Adv. Mater. 35 2211593Google Scholar

    [11]

    Brooks K G, Nazeeruddin M K 2021 Adv. Energy Mater. 11 2101149Google Scholar

    [12]

    Castriotta L A, Zendehdel M, Nia N Y, Leonardi E, Löfffer M, Paci B, Generosi A, Rellinghaus B, Carlo A D 2022 Adv. Energy Mater. 12 2103420Google Scholar

    [13]

    Babayigit A, Haen J D, Boyen H G, Conings B 2018 Joule 2 1205Google Scholar

    [14]

    Konstantakou M, Perganti D, Falaras P, Stergiopoulos T 2017 Crystals 7 291Google Scholar

    [15]

    Gu L, Wang S, Fang X, Liu D, Xu Y, Yuan N, Ding J 2020 ACS Appl. Mater. Interfaces 12 33870Google Scholar

    [16]

    Jang G, Kwon H C, Ma S, Yun S C, Yang H, Moon J 2019 Adv. Energy Mater. 9 1901719Google Scholar

    [17]

    Gu L L, Fei F, Xu Y B, Wang S B, Yuan N Y, Ding J N 2022 ACS Appl. Mater. Interfaces 14 2949Google Scholar

    [18]

    Li H Y, Bu T L, Li J, Lin Z P, Pan J Y, Li Q H, Zhang X L, Ku Z L, Cheng Y B, Huang F Z 2021 ACS Appl. Mater. Interfaces 13 18724Google Scholar

    [19]

    Vesce L, Stefanelli M, Herterich J P, Castriotta L A, Kohlstädt M, Würfel U, Carlo A D 2021 Solar RRL 5 2100073Google Scholar

    [20]

    Xu J, Dong H, Xi J, Yang Y, Yu Y, Ma L, Chen J B, Jiao B, Hou X, Li J R, Wu Z X 2020 Nano Energy 75 104940Google Scholar

    [21]

    Xu J, Xi J, Dong H, Ahn N, Zhu Z L, Chen J B, Li P Z, Zhu X Y, Dai J F, Hu Z Y, Jiao B, Hou X, Li J R, Wu Z X 2021 Nano Energy 88 106286Google Scholar

    [22]

    Zhu X Y, Dong H, Chen J B, Xu J, Li Z J, Yuan F, Dai J F, Jiao B, Hou X, Xi J, Wu Z X 2022 Adv. Funct. Mater. 32 2202408Google Scholar

  • 图 1  (a) SEM截面形貌图; (b) DEGDMA单体在钙钛矿薄膜上的光聚合过程

    Fig. 1.  (a) SEM morphology of the cross-section for device; (b) polymerization process of DEGDMA on the perovskite fIlm after light-initiated process.

    图 2  空气中真空萃取制备的钙钛矿薄膜的表面SEM和AFM形貌图 (a), (e) 0 mg/mL; (b), (f) 1.0 mg/mL; (c), (g) 2.0 mg/mL; (d), (h) 5.0 mg/mL

    Fig. 2.  SEM and AFM morphologies of perovskite films prepared by vacuuming in air with different weight concentrations: (a), (e) 0 mg/mL; (b), (f) 1.0 mg/mL; (c), (g) 2.0 mg/mL; (d), (h) 5.0 mg/mL.

    图 3  大气环境中真空抽气法制备的钙钛矿薄膜PEGDMA处理前后的(a) XRD图和接触角, 以及(b) Pb元素的XPS特征峰

    Fig. 3.  Perovskite films prepared in atmospheric environment with and without PEGDMA: (a) XRD patterns and contact angles; (b) XPS characteristic peak of Pb.

    图 4  PEGDMA聚合物夹层处理前后钙钛矿表面的(a) 吸收光谱及(b) 荧光发射光谱; (c) 单电子器件电流-电压曲线及(d)标准器件电化学阻抗谱

    Fig. 4.  (a) Absorption spectrum and (b) fluorescence emission spectrum of perovskite films with polymer layer modified; (c) dark J-V curves of electron-only devices and (d) Nyquist plots of devices.

    图 5  (a) 钙钛矿模组实物图及(b)激光刻蚀结构图

    Fig. 5.  (a) Photo and (b) cross section structure of laser etching for the perovskite module.

    图 6  (a)刚性和(b)柔性钙钛矿模组器件的室外J-V曲线图

    Fig. 6.  The J-V curves of rigid (a) and flexible (b) perovskite module with or without PEGDMA.

    图 7  (a)室内LED白光的光谱曲线及(b)刚性和(c)柔性钙钛矿模组器件的室内弱光J-V曲线

    Fig. 7.  (a) Illumination spectra of white LED and J-V curves of (b) rigid and (c) flexible perovskite module with or without PEGDMA under white LED.

    图 8  柔性PEN导电层方阻随退火时间(150 ℃)的变化曲

    Fig. 8.  Curve of square resistance for flexible PEN with annealing time (150 ℃).

    图 9  柔性钙钛矿模组的器件湿度稳定性(a)和耐弯折稳定性(b)

    Fig. 9.  Humidity (a) and bending stability (b) of flexible perovskite module.

    图 10  钙钛矿模组器件的水侵蚀研究及铅泄漏评估

    Fig. 10.  Water erosion study and lead leakage assessment of perovskite module.

    表 1  聚合物层修饰的刚性和柔性模组器件室外光电参数比较

    Table 1.  Comparison of optoelectronic parameters of polymer layer modified rigid and flexible perovskite module devices.

    器件 JSC/(mA·cm–2) VOC/V FF/% PCE/%
    Glass/ITO-控制组 (in air) 3.84 6.62 73.6 18.71
    Glass/ITO-PEGDMA (in air) 3.94 6.70 73.9 19.51
    Glass/ITO-PEGDMA (in N2) 4.02 6.65 73.3 19.59
    PEN/ITO-控制组 (in air) 3.81 6.51 65.6 16.26
    PEN/ITO-PEGDMA (in air) 3.83 6.60 71.9 18.17
    PEN/ITO-PEGDMA (in N2) 3.89 6.63 71.3 18.39
    下载: 导出CSV
  • [1]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [2]

    Wolf S D, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [5]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H 2013 Adv. Mater. 25 3227Google Scholar

    [6]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html

    [7]

    Ding Y, Ding B, Kanda H, Usiobo O J, Gallet T, Yang Z H, Liu Y, Huang H, Sheng J, Liu C, Yang Y, Queloz V I E, Zhang X F, Audinot J N, Redinger A, Dang W, Mosconic E, Luo W, Angelis F D, Wang M K, Dörflinger P, Armer M, Schmid V, Wang R, Brooks K G, Wu J H, Dyakonov V, Yang G J, Dai S Y, Dyson P J, Nazeeruddin M K 2022 Nat. Nanotechnol. 17 598Google Scholar

    [8]

    Rana P J S, Febriansyah B, Koh T M, Muhammad B T, Salim T, Hooper T J N, Kanwat A, Ghosh B, Kajal P, Lew J H, Aw Y C, Yantara N, Bruno A, Pullarkat S A, Ager J W, Leong W L, Mhaisalkar S G, Mathews N 2022 Adv. Funct. Mater. 32 2113026Google Scholar

    [9]

    Wang Y, Yang H, Zhang K, Tao M Q, Li M Z, Song Y L 2022 ACS Energy Lett. 7 3646Google Scholar

    [10]

    Zhang K, Wang Y, Tao M Q, Guo L T, Yang Y R, Shao J Y, Zhang Y Y, Wang F Y, Song Y L 2023 Adv. Mater. 35 2211593Google Scholar

    [11]

    Brooks K G, Nazeeruddin M K 2021 Adv. Energy Mater. 11 2101149Google Scholar

    [12]

    Castriotta L A, Zendehdel M, Nia N Y, Leonardi E, Löfffer M, Paci B, Generosi A, Rellinghaus B, Carlo A D 2022 Adv. Energy Mater. 12 2103420Google Scholar

    [13]

    Babayigit A, Haen J D, Boyen H G, Conings B 2018 Joule 2 1205Google Scholar

    [14]

    Konstantakou M, Perganti D, Falaras P, Stergiopoulos T 2017 Crystals 7 291Google Scholar

    [15]

    Gu L, Wang S, Fang X, Liu D, Xu Y, Yuan N, Ding J 2020 ACS Appl. Mater. Interfaces 12 33870Google Scholar

    [16]

    Jang G, Kwon H C, Ma S, Yun S C, Yang H, Moon J 2019 Adv. Energy Mater. 9 1901719Google Scholar

    [17]

    Gu L L, Fei F, Xu Y B, Wang S B, Yuan N Y, Ding J N 2022 ACS Appl. Mater. Interfaces 14 2949Google Scholar

    [18]

    Li H Y, Bu T L, Li J, Lin Z P, Pan J Y, Li Q H, Zhang X L, Ku Z L, Cheng Y B, Huang F Z 2021 ACS Appl. Mater. Interfaces 13 18724Google Scholar

    [19]

    Vesce L, Stefanelli M, Herterich J P, Castriotta L A, Kohlstädt M, Würfel U, Carlo A D 2021 Solar RRL 5 2100073Google Scholar

    [20]

    Xu J, Dong H, Xi J, Yang Y, Yu Y, Ma L, Chen J B, Jiao B, Hou X, Li J R, Wu Z X 2020 Nano Energy 75 104940Google Scholar

    [21]

    Xu J, Xi J, Dong H, Ahn N, Zhu Z L, Chen J B, Li P Z, Zhu X Y, Dai J F, Hu Z Y, Jiao B, Hou X, Li J R, Wu Z X 2021 Nano Energy 88 106286Google Scholar

    [22]

    Zhu X Y, Dong H, Chen J B, Xu J, Li Z J, Yuan F, Dai J F, Jiao B, Hou X, Xi J, Wu Z X 2022 Adv. Funct. Mater. 32 2202408Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池的研究. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [3] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [4] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [11] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  2599
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-09-12
  • 上网日期:  2023-09-15
  • 刊出日期:  2023-12-20

/

返回文章
返回