搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器

孙堂友 余燕丽 覃祖彬 陈赞辉 陈均丽 江玥 张法碧

引用本文:
Citation:

基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器

孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧

Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars

Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi
PDF
HTML
导出引用
  • 全无机无铅双钙钛矿材料(Cs2AgBiBr6)具有载流子寿命长、稳定性高和禁带宽度适中等优点, 近年来在光电探测器的应用研究上受到广泛关注. 本文通过将水热法生长的TiO2纳米柱阵列嵌入到Cs2AgBiBr6层中形成紧密的核壳结构, 增大两者的物理接触面积, 提高光电探测器电子注入与电荷分离的效率. 此外, TiO2纳米柱阵列还可以有效减小光在器件表面的反射损耗, 增强Cs2AgBiBr6薄膜的光捕获能力. 实验结果表明, 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器在365 nm及405 nm多个波长均能激发高光响应且有良好稳定性和重复性, 所得平均开关比分别为522和2090, 以0.056 W/cm2固定光强激发, 响应度分别为0.019 A/W和0.057 A/W, 比探测率分别为1.9×1010 Jones和5.6×1010 Jones. 相比于传统TiO2薄膜型Cs2AgBiBr6光电探测器, 平均开关比分别提升65倍和110倍, 响应度分别提升35%和256%, 比探测率分别提升6.9倍和25倍. 上述结果表明, 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器可为提高光电器件的效率提供参考方案.
    Photodetectors are widely used in the fields of environmental monitoring, medical analysis, security surveillance, optical communication and biosensing due to their high responsiveness, fast response time, low power consumption, good stability and low processing cost. Fully inorganic lead-free perovskite material (Cs2AgBiBr6) has received a lot of attention in recent years in the research of photodetector applications due to its advantages of long carrier lifetime, high stability, moderate forbidden bandwidth, and environmental friendliness. For perovskite photodetectors, the semiconductor nanopillar array structure can effectively reduce the reflection loss of light from the surface to improve the absorption of incident light in the device and inhibit the exciton complexes in the device, and the good energy level matching between TiO2 and Cs2AgBiBr6 can effectively promote the transport and extraction of carriers in the device. However, there are few reports on the use of TiO2 nanopillar arrays as a transport layer to improve the performance of Cs2AgBiBr6 photodetectors. In this work, high-quality Cs2AgBiBr6 thin films with large grain size, no visible pinholes, and good uniform coverage are successfully prepared by a low-pressure-assisted spin-coating method under ambient conditions. Hydrothermally grown TiO2 nanopillar arrays are embedded into the Cs2AgBiBr6 layer to form a close core-shell structure, increasing the physical contact area between the two to ensure more effective electron injection and charge separation, and to improve the carrier transport efficiency in the device. Multi-band responsive Cs2AgBiBr6 double perovskite photodetectors based on TiO2 nanopillars are excited at multiple wavelengths of 365 nm and 405 nm with high light response and good stability and reproducibility, resulting in average switching ratios of 522 and 2090, respectively. When the light source is excited at 365 nm and 405 nm with a light intensity of 0.056 W/cm2, the responsivity is 0.019 A/W and 0.057 A/W, respectively, and the specific detectivity is 1.9 × 1010 Jones and 5.6 × 1010 Jones, respectively. Comparing with the Cs2AgBiBr6 perovskite photodetector based on a planar TiO2 electron transport layer, the average switching ratios are improved by a factor of 65 and 110, the responsivities are improved by 35% and 256%, and the specific detectivity are improved by a factor of 6.9 and 25, respectively. In this work, the photoelectric performance of Cs2AgBiBr6 photodetector is improved by using TiO2 nanopillars as an electron transport layer. It provides a reference solution for developing high-performance Cs2AgBiBr6 perovskite photodetectors in future.
      通信作者: 陈赞辉, zhchen@guet.edu.cn ; 张法碧, zhangfabi@outlook.com
    • 基金项目: 广西自然科学基金(批准号: 桂科 AD23026253)、国家自然科学基金(批准号: 52262022, 62205080)、广西精密导航技术与应用重点实验室(批准号: DH202202, DH202302)和广西类脑计算与智能芯片重点实验室开放基金(批准号: BCIC-23-K6)资助的课题.
      Corresponding author: Chen Zan-Hui, zhchen@guet.edu.cn ; Zhang Fa-Bi, zhangfabi@outlook.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi, China (Grant No. GuiKe AD23026253), the National Natural Science Foundation of China (Grant Nos. 52262022, 62205080), the Key Laboratory of Precision Navigation Technology and Application of Guangxi Province, China (Grant Nos. DH202202, DH202302), and the Key Laboratory of Brain-Like Computing and Intelligent Chip Open Fund Project of Guangxi Province, China (Grant No. BCIC-23-K6).
    [1]

    Li Z Q, Yan T T, Fang X S 2023 Nat. Rev. Mater. 8 587Google Scholar

    [2]

    Arya S, Mahajan P, Gupta R, et al. 2020 Prog. Solid State Chem. 60 100286Google Scholar

    [3]

    Chen Y H, Feng Z J, Pal A, Zhang J C 2022 Phys. Status Solidi A-Appl. Mat. 219 2200018Google Scholar

    [4]

    Chouhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V 2020 Chem. Soc. Rev. 49 2869Google Scholar

    [5]

    Li H Y, Shen N, Chen S, Guo F, Xu B M 2023 Adv. Funct. Mater. 33 32Google Scholar

    [6]

    郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞 2020 物理学报 69 167804Google Scholar

    Xi Y Y, Han Y, Li G H, Zhai A P, Ji T, Hao Y Y, Cui Y X 2020 Acta Phys. Sin. 69 167804Google Scholar

    [7]

    Jeong B, Han H, Park C 2020 Adv. Mater. 32 35Google Scholar

    [8]

    Priyadarshini P, Senapati S, Naik R 2023 Renew. Sust. Energ. Rev. 186 39Google Scholar

    [9]

    Wang Y X, Zhao H R, Piotrowski M, et al. 2022 Micromachines 13 28Google Scholar

    [10]

    Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar

    [11]

    Chang Z Z, Lu Z J, Deng W, Shi Y D, Sun Y Y, Zhang X J, Jie J S 2023 Nanoscale 15 5053Google Scholar

    [12]

    Chang Z Z, Deng W, Ren X B, Liu X Y, Luo G, Tan Y, Zhang X J, Jie J S 2023 ACS Appl. Mater. Interfaces 15 32037Google Scholar

    [13]

    王俪璇, 李仁杰, 刘辉, 王鹏阳, 石标, 赵颖, 张晓丹 2021 物理学报 70 118402Google Scholar

    Wang L X, Li R J, Liu H, Wang P Y, Shi B A, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 118402Google Scholar

    [14]

    Nazir G, Lee S Y, Lee J H, Rehman A, Lee J K, Il Seok S, Park S J 2022 Adv. Mater. 34 45Google Scholar

    [15]

    Yan X B, Zhao Y, Cao G, Li X Y, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X P, Xie Z J, Zhang H 2023 Adv. Sci. 10 55Google Scholar

    [16]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [17]

    Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar

    [18]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar

    [19]

    Ikram M, Malik R, Raees R, Imran M, Wang F, Ali S, Khan M, Khan Q, Maqbool M 2022 Sustain. Energy Technol. Assess. 53 16Google Scholar

    [20]

    Supatutkul C, Sitarachu K, Laosiritaworn Y, Jaroenjittichai A P 2023 Mater. Today Commun. 36 7Google Scholar

    [21]

    Igbari F, Xu F F, Shao J Y, Ud-Din F, Siffalovic P, Zhong Y W 2023 Sol. RRL 7 28Google Scholar

    [22]

    Chen X, Jia M C, Xu W, Pan G C, Zhu J Y, Tian Y T, Wu D, Li X J, Shi Z F 2023 Adv. Opt. Mater. 11 48Google Scholar

    [23]

    Dipta S S, Uddin A, Conibeer G 2022 Heliyon 8 12Google Scholar

    [24]

    Peng Y Y, Jiang D Y, Zhao M, Duan Y H, Wei H M, Li H D, Liang Q C, Wang S W 2023 J. Alloy. Compd. 965 8Google Scholar

    [25]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [26]

    Yuan Y, Ji Z, Yan G H, et al. 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [27]

    Sun P, Qu G P, Hu Q K, Ma Y C, Liu H S, Xu Z X, Huang Z F 2022 ACS Appl. Energ. Mater. 5 3568Google Scholar

    [28]

    Manjunath V, Bimli S, Shaikh P A, Ogale S B, Devan R S 2022 J. Mater. Chem. C 10 15725Google Scholar

    [29]

    Chen C, Zheng S J, Song H W 2021 Chem. Soc. Rev. 50 7250Google Scholar

    [30]

    Xiao B, Tan Y, Yi Z J, Luo Y B, Jiang Q H, Yang J Y 2021 ACS Appl. Mater. Interfaces 13 37027Google Scholar

    [31]

    Qin K, Dun G H, Li Y Y, et al. 2023 ACS Appl. Mater. Interfaces 15 37640Google Scholar

    [32]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [33]

    Djokic V R, Marinkovic A D, Petrovic R D, Ersen O, Zafeiratos S, Mitric M, Ophus C, Radmilovic V R, Janackovic D T 2020 ACS Appl. Mater. Interfaces 12 33058Google Scholar

    [34]

    Xiao T, Zhao J, Sun P, Li P, Zhang Y K, Zhao N, Ren Z W, Li G, Huang Z F, Zheng Z J 2021 Small 17 10Google Scholar

    [35]

    Pan B K, Gu J H, Xu X L, Xiao L B, Zhao J, Zou G F 2021 Nano Res. 14 3431Google Scholar

    [36]

    Cen G B, Sheng H G, Wang Z X, Yi L, Sun H C, An Y P, Zhao C X, Mai W J 2023 J. Colloid Interface Sci. 652 34Google Scholar

    [37]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [38]

    Zhang Z Y, Sun Q D, Lu Y, Lu F, Mu X L, Wei S H, Sui M L 2022 Nat. Commun. 13 12Google Scholar

    [39]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [40]

    Vu N H, Le H V, Cao T M, Pham V V, Le H M, Duc N M 2012 J. Phys. Condes. Matter 24 405501Google Scholar

    [41]

    Dharmale N, Chaudhury S, Kar J 2021 ECS J. Solid State Sci. Technol. 10 10Google Scholar

    [42]

    Lal M, Sharma P, Ram C 2021 Optik 241 14Google Scholar

    [43]

    Shen W H, Jung U, Xian Z P, Jung B, Park J 2022 J. Alloy. Compd. 929 167329Google Scholar

    [44]

    Wang C, Zhao F Z, Zhou Z Y, Li X X, He S L, Zhang M L, Zhang D Y, Zhang L C 2022 J. Alloy. Compd. 905 164245Google Scholar

    [45]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 物理学报 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [46]

    Li T, Wang J, Gao Z Y, Lü P, Yang Y B, Wu J S, Hong J W, Wang X Y, Zhou Y W 2019 Appl. Phys. Lett. 115 131103Google Scholar

    [47]

    Dang Y Y, Tong G Q, Song W T, Liu Z H, Qiu L B, Ono L K, Qi Y B 2020 J. Mater. Chem. C 8 276Google Scholar

    [48]

    Wu C C, Du B W, Luo W, et al. 2018 Adv. Opt. Mater. 6 1800811Google Scholar

  • 图 1  Cs2AgBiBr6/TiO2 SL@NPs光电探测器制备工艺 (a) TiO2 SL的形成; (b) TiO2 NPs的生长; (c) 前驱体溶液和基底的预热处理; (d) 旋涂法沉积Cs2AgBiBr6薄膜; (e) 低压辅助处理; (f) 退火处理; (g) 热蒸镀沉积Au电极; (h) 钙钛矿光电探测器三维结构示意图

    Fig. 1.  Preparation process of Cs2AgBiBr6/TiO2 SL@NPs photodetectors: (a) Formation of TiO2 SL; (b) growth of TiO2 NPs; (c) preheating treatment of precursor solution and substrate; (d) spin-coating method for deposition of Cs2AgBiBr6 thin film; (e) low pressure auxiliary treatment; (f) annealing treatment; (g) thermal vapour deposition of Au electrodes; (h) schematic diagram of three-dimensional structure of perovskite photodetectors.

    图 2  (a), (b) Cs2AgBiBr6/FTO器件表面和截面的SEM图; (c), (d) Cs2AgBiBr6/TiO2 SL@NPs/FTO器件表面和截面的SEM图

    Fig. 2.  (a), (b) SEM of the surface and cross-section of the Cs2AgBiBr6/FTO device, respectively; (c), (d) SEM of the surface and cross-section of the Cs2AgBiBr6/TiO2 SL@NPs/FTO device, respectively.

    图 3  Cs2AgBiBr6层和Cs2AgBiBr6/TiO2 SL@NPs层的XRD图, 其中Cs2AgBiBr6的模拟XRD图由参考文献[32]获得

    Fig. 3.  XRD patterns of the Cs2AgBiBr6 layer and the Cs2AgBiBr6/TiO2 SL@NPs layer, where the simulated XRD patterns of Cs2AgBiBr6 were obtained from Ref. [32].

    图 5  (a) Cs2AgBiBr6/FTO, TiO2 SL@NPs/FTO和Cs2AgBiBr6/TiO2 SL@NPs/FTO器件的紫外-可见吸收光谱图; (b) Cs2AgBiBr6/FTO, Cs2AgBiBr6/TiO2 SL@NPs/FTO器件的稳态PL光谱图; (c), (d) 分别为Cs2AgBiBr6和TiO2的Tauc图

    Fig. 5.  (a) UV-vis absorption spectra of Cs2AgBiBr6/FTO, TiO2 SL@NPs/FTO and Cs2AgBiBr6/TiO2 SL@NPs/FTO devices; (b) steady-state PL spectra of Cs2AgBiBr6/FTO, Cs2AgBiBr6/TiO2 SL@NPs/FTO devices; (c), (d) Tauc plots for Cs2AgBiBr6 and TiO2, respectively.

    图 4  Cs2AgBiBr6/TiO2 SL@NPs钙钛矿光电探测器在光照条件下的工作机制图

    Fig. 4.  Mechanism of operation of Cs2AgBiBr6/TiO2 SL@NPs perovskite photodetectors in light conditions.

    图 6  Cs2AgBiBr6/TiO2 SL@NPs/FTO器件在黑暗条件下所获暗电流值以及被365 nm和405 nm波长光源以不同光功率激发所得光电流值对比 (a) 0.31 W/cm2; (b) 0.152 W/cm2; (c) 0.094 W/cm2; (d) 0.056 W/cm2

    Fig. 6.  Comparison of the dark current values obtained by the Cs2AgBiBr6/TiO2 SL@NPs/FTO device under dark conditions and the photocurrent values obtained by being excited by 365 nm and 405 nm wavelength light sources at different optical power: (a) 0.31 W/cm2; (b) 0.152 W/cm2; (c) 0.094 W/cm2; (d) 0.056 W/cm2.

    图 7  Cs2AgBiBr6/TiO2 SL@NPs/FTO光电探测器的时域光响应电流(偏压: 0 V、入射光强度: 0.31 W/cm2) (a), (b) 分别为365 nm和405 nm波长光源(开/关)激发的循环I-T曲线图; (c), (d) 分别为365 nm和405 nm波长光源激发的单循环I-T曲线图

    Fig. 7.  Time-domain optical response current of the Cs2AgBiBr6/TiO2 SL@NPs/FTO photodetector (Bias voltage: 0 V, incident light intensity: 0.31 W/cm2): (a), (b) Cyclic I-T curves for the excitation of light source (on/off) at 365 and 405 nm wavelengths, respectively; (c), (d) single-cycle I-T curves for the excitation of light source at 365 and 405 nm wavelengths, respectively.

    图 8  Cs2AgBiBr6/TiO2 SL/FTO光电探测器的SEM图 (a)表面; (b)截面

    Fig. 8.  SEM images of Cs2AgBiBr6/TiO2 SL/FTO photodetector: (a) Surface section; (b) cross section.

    图 9  Cs2AgBiBr6/TiO2 SL@NPs/FTO光电探测器与Cs2AgBiBr6/TiO2 SL/FTO光电探测器性能指标对比 (a), (b)分别为365 nm和405 nm波长光源以不同光强激发两种器件所获光电流对比以及在黑暗条件下所获暗电流对比; (c), (d)分别为365 nm和405 nm波长光源激发两种器件所获响应度随着入射光强变化的曲线图; (e), (f)分别为365 nm和405 nm波长光源激发两种器件所获比探测率随入射光强变化的曲线图

    Fig. 9.  Comparison of the performance indexes of Cs2AgBiBr6/TiO2 SL@NPs/FTO photodetectors and Cs2AgBiBr6/TiO2 SL/FTO photodetectors: (a), (b) Comparison of photocurrents obtained by exciting the two devices with different light intensities at 365 nm and 405 nm wavelengths, respectively, and the comparison of dark currents obtained under dark conditions; (c), (d) plots of the variation of the responsivity with the incident light intensity obtained by exciting the two devices with 365 nm and 405 nm wavelength light sources, respectively; (e), (f) plots of specific detectivity versus incident light intensity for two devices excited by 365 nm and 405 nm wavelength sources, respectively.

    表 1  Cs2AgBiBr6基光电探测器的光响应性能比较

    Table 1.  Comparison of photoresponse performance of Cs2AgBiBr6-based photodetectors.

    Device structure Measurement conditions Responsivity/(A·W–1) D*/(109 Jones) Ref.
    ITO/Cs2AgBiBr6 single crystal/ITO 1 V, 460 nm 4 × 10–5 20 [46]
    Ag/Cs2AgBiBr6 single crystal 5 V, 400 nm 0.92 1.38 [47]
    Cs2AgBiBr6/SnO2/ZnO NRs 405 nm 0.608 29.7 [43]
    Cs2AgBiBr6/SnO2 350 nm 0.11 21 [48]
    Cs2AgBiBr6/TiO2 SL –3 V, 405 nm 0.016 2.1 This work
    Cs2AgBiBr6/TiO2 SL –3 V, 365 nm 0.014 2.4 This work
    Cs2AgBiBr6/TiO2 SL@NPs –3 V, 405 nm 0.057 56 This work
    Cs2AgBiBr6/TiO2 SL@NPs –3 V, 365 nm 0.019 19 This work
    下载: 导出CSV
  • [1]

    Li Z Q, Yan T T, Fang X S 2023 Nat. Rev. Mater. 8 587Google Scholar

    [2]

    Arya S, Mahajan P, Gupta R, et al. 2020 Prog. Solid State Chem. 60 100286Google Scholar

    [3]

    Chen Y H, Feng Z J, Pal A, Zhang J C 2022 Phys. Status Solidi A-Appl. Mat. 219 2200018Google Scholar

    [4]

    Chouhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V 2020 Chem. Soc. Rev. 49 2869Google Scholar

    [5]

    Li H Y, Shen N, Chen S, Guo F, Xu B M 2023 Adv. Funct. Mater. 33 32Google Scholar

    [6]

    郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞 2020 物理学报 69 167804Google Scholar

    Xi Y Y, Han Y, Li G H, Zhai A P, Ji T, Hao Y Y, Cui Y X 2020 Acta Phys. Sin. 69 167804Google Scholar

    [7]

    Jeong B, Han H, Park C 2020 Adv. Mater. 32 35Google Scholar

    [8]

    Priyadarshini P, Senapati S, Naik R 2023 Renew. Sust. Energ. Rev. 186 39Google Scholar

    [9]

    Wang Y X, Zhao H R, Piotrowski M, et al. 2022 Micromachines 13 28Google Scholar

    [10]

    Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar

    [11]

    Chang Z Z, Lu Z J, Deng W, Shi Y D, Sun Y Y, Zhang X J, Jie J S 2023 Nanoscale 15 5053Google Scholar

    [12]

    Chang Z Z, Deng W, Ren X B, Liu X Y, Luo G, Tan Y, Zhang X J, Jie J S 2023 ACS Appl. Mater. Interfaces 15 32037Google Scholar

    [13]

    王俪璇, 李仁杰, 刘辉, 王鹏阳, 石标, 赵颖, 张晓丹 2021 物理学报 70 118402Google Scholar

    Wang L X, Li R J, Liu H, Wang P Y, Shi B A, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 118402Google Scholar

    [14]

    Nazir G, Lee S Y, Lee J H, Rehman A, Lee J K, Il Seok S, Park S J 2022 Adv. Mater. 34 45Google Scholar

    [15]

    Yan X B, Zhao Y, Cao G, Li X Y, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X P, Xie Z J, Zhang H 2023 Adv. Sci. 10 55Google Scholar

    [16]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [17]

    Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar

    [18]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar

    [19]

    Ikram M, Malik R, Raees R, Imran M, Wang F, Ali S, Khan M, Khan Q, Maqbool M 2022 Sustain. Energy Technol. Assess. 53 16Google Scholar

    [20]

    Supatutkul C, Sitarachu K, Laosiritaworn Y, Jaroenjittichai A P 2023 Mater. Today Commun. 36 7Google Scholar

    [21]

    Igbari F, Xu F F, Shao J Y, Ud-Din F, Siffalovic P, Zhong Y W 2023 Sol. RRL 7 28Google Scholar

    [22]

    Chen X, Jia M C, Xu W, Pan G C, Zhu J Y, Tian Y T, Wu D, Li X J, Shi Z F 2023 Adv. Opt. Mater. 11 48Google Scholar

    [23]

    Dipta S S, Uddin A, Conibeer G 2022 Heliyon 8 12Google Scholar

    [24]

    Peng Y Y, Jiang D Y, Zhao M, Duan Y H, Wei H M, Li H D, Liang Q C, Wang S W 2023 J. Alloy. Compd. 965 8Google Scholar

    [25]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [26]

    Yuan Y, Ji Z, Yan G H, et al. 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [27]

    Sun P, Qu G P, Hu Q K, Ma Y C, Liu H S, Xu Z X, Huang Z F 2022 ACS Appl. Energ. Mater. 5 3568Google Scholar

    [28]

    Manjunath V, Bimli S, Shaikh P A, Ogale S B, Devan R S 2022 J. Mater. Chem. C 10 15725Google Scholar

    [29]

    Chen C, Zheng S J, Song H W 2021 Chem. Soc. Rev. 50 7250Google Scholar

    [30]

    Xiao B, Tan Y, Yi Z J, Luo Y B, Jiang Q H, Yang J Y 2021 ACS Appl. Mater. Interfaces 13 37027Google Scholar

    [31]

    Qin K, Dun G H, Li Y Y, et al. 2023 ACS Appl. Mater. Interfaces 15 37640Google Scholar

    [32]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [33]

    Djokic V R, Marinkovic A D, Petrovic R D, Ersen O, Zafeiratos S, Mitric M, Ophus C, Radmilovic V R, Janackovic D T 2020 ACS Appl. Mater. Interfaces 12 33058Google Scholar

    [34]

    Xiao T, Zhao J, Sun P, Li P, Zhang Y K, Zhao N, Ren Z W, Li G, Huang Z F, Zheng Z J 2021 Small 17 10Google Scholar

    [35]

    Pan B K, Gu J H, Xu X L, Xiao L B, Zhao J, Zou G F 2021 Nano Res. 14 3431Google Scholar

    [36]

    Cen G B, Sheng H G, Wang Z X, Yi L, Sun H C, An Y P, Zhao C X, Mai W J 2023 J. Colloid Interface Sci. 652 34Google Scholar

    [37]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [38]

    Zhang Z Y, Sun Q D, Lu Y, Lu F, Mu X L, Wei S H, Sui M L 2022 Nat. Commun. 13 12Google Scholar

    [39]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [40]

    Vu N H, Le H V, Cao T M, Pham V V, Le H M, Duc N M 2012 J. Phys. Condes. Matter 24 405501Google Scholar

    [41]

    Dharmale N, Chaudhury S, Kar J 2021 ECS J. Solid State Sci. Technol. 10 10Google Scholar

    [42]

    Lal M, Sharma P, Ram C 2021 Optik 241 14Google Scholar

    [43]

    Shen W H, Jung U, Xian Z P, Jung B, Park J 2022 J. Alloy. Compd. 929 167329Google Scholar

    [44]

    Wang C, Zhao F Z, Zhou Z Y, Li X X, He S L, Zhang M L, Zhang D Y, Zhang L C 2022 J. Alloy. Compd. 905 164245Google Scholar

    [45]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 物理学报 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [46]

    Li T, Wang J, Gao Z Y, Lü P, Yang Y B, Wu J S, Hong J W, Wang X Y, Zhou Y W 2019 Appl. Phys. Lett. 115 131103Google Scholar

    [47]

    Dang Y Y, Tong G Q, Song W T, Liu Z H, Qiu L B, Ono L K, Qi Y B 2020 J. Mater. Chem. C 8 276Google Scholar

    [48]

    Wu C C, Du B W, Luo W, et al. 2018 Adv. Opt. Mater. 6 1800811Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [4] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [5] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响. 物理学报, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [6] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [7] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [9] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [10] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [11] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [12] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [13] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [14] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [15] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [16] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [17] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [18] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [19] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
计量
  • 文章访问数:  3037
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2023-12-30
  • 上网日期:  2024-01-10
  • 刊出日期:  2024-04-05

/

返回文章
返回