搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究

隽珽 邢家赫 曾凡聪 郑鑫 徐琳

引用本文:
Citation:

基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究

隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳
cstr: 32037.14.aps.73.20240827

Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer

Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin
cstr: 32037.14.aps.73.20240827
PDF
HTML
导出引用
  • 电子传输层是钙钛矿太阳能电池的重要功能层, 其表面及内部缺陷是限制钙钛矿太阳能电池性能提升的重要一环. 双电子传输层(双ETL)策略虽然可以改善电子在功能层之间提取与传输, 但是双ETL内部存在的独立界面以及不同ETL材料晶胞不匹配问题导致了额外的非辐射复合. 基于此, 本文提出了将二[2-((氧代)二苯基膦基)苯基]醚(DPEPO)引入到SnO2中设计混合电子传输层的策略, 该策略在钝化SnO2中本征缺陷的同时, 可以避免由于额外界面的存在而导致的缺陷态, 有效改善了电子的提取与传输. 并且进一步实现了对钙钛矿薄膜的结晶调控, 提升钙钛矿太阳能电池性能, 最终收获了基于宽带隙钙钛矿太阳能电池21.53%的功率转换率, 其中开路电压(VOC)达到了1.220 V, 短路电流(JSC)为23.19 mA/cm2, 填充因子(FF)高达76.11%. 研究表明混合电子传输层策略可以有效优化载流子传输动力学, 促进钙钛矿高质量结晶, 对制备高性能太阳能电池具有一定指导意义.
    The electron transport layer is an important functional layer of perovskite solar cells, and its surface and internal defects are critical parts of limiting the performance improvement of perovskite solar cells. The double electron transport layer (double ETL) strategy can effectively passivate inherent defects in the electron transport layer (such as SnO2) and improve electron extraction and transport between the functional layers, providing an effective way for developing efficient and stable PSCs. However, due to the existence of independent interfaces in the dual ETL, the cell mismatch in different ETL materials also leads to additional carrier defects, hindering the continuous advancement of the dual ETL strategy. This work proposes a strategy for introducing di[2-((oxo)diphenylphosphino)phenyl]ether (DPEPO) into SnO2 ETL to design a hybrid electron transport layer strategy. Using the hole-blocking effect of DPEPO, which has a higher HOMO energy level and good ability to transfer electrons, the intrinsic defects in SnO2 are successfully passivated, while significantly improving the crystalline quality of the SnO2 film surface. So, avoiding the direct contact between the perovskite photoactive layer and the conductive substrate can effectively improve the extraction and transport of electrons. Due to the preparation of high-quality electron transport layer, the crystallization regulation of perovskite thin film is further achieved, thereby improving the performance of perovskite solar cells. Finally, 21.53% of the power conversion rate is obtained, the open-circuit voltage (VOC) reaches 1.220 V, the short-circuit current (JSC) is 23.19 mA/cm2, and the fill factor (FF) is 76.11%. This efficiency is 1.39% higher than that of the control one. It is shown that the hybrid electron transport layer strategy can not only optimize the carrier transport dynamics efficiently and reduce the device performance affected by the defects in the functional layer significantly, but also regulate the perovskite crystallization, which has the prospect for preparing high-performance solar cells.
      通信作者: 徐琳, linxu@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U22A20184, 52250077, 52272080)和吉林省自然科学基金(批准号: 20220201093GX)资助的课题.
      Corresponding author: Xu Lin, linxu@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A20184, 52250077, 52272080) and the Natural Science Foundation of Jilin Province, China (Grant No. 20220201093GX).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc 131 6050Google Scholar

    [2]

    Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar

    [3]

    Deng K M, Chen Q H, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [4]

    Lv J C, Li H X, Chen H Y, Ke L L, Du W J, Xiong J, Zhou C H, Liu G 2023 Appl. Phys. Lett. 122 233501Google Scholar

    [5]

    Dahal B, Guo R, Pathak R, Rezaee M D, Elam J W, Mane A U, Li W J 2023 J. Phys. Chem. Solids 181 111532Google Scholar

    [6]

    Bai C, Dong W, Cai H Y, Zu C P, Yue W, Li H X, Zhao J, Huang F Z, Cheng Y B, Zhong J 2023 Adv. Energy Mater. 13 2300491Google Scholar

    [7]

    Khan U, Iqbal T, Khan M, Wu R 2021 Sol. Energy 223 346Google Scholar

    [8]

    Gan Y J, Qiu G X, Qin B Y, Bi X G, Liu Y C, Nie G C, Ning W L, Yang R Z 2023 Nanomaterials 13 1313Google Scholar

    [9]

    Zhang Y H, Xu L, Sun J, Wu Y J, Kan Z T, Zhang H, Yang L, Liu B, Dong B, Bai X, Song H W 2022 Adv. Energy Mater. 12 2201269Google Scholar

    [10]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802]Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [11]

    Jang H J, Lee J Y 2019 J. Phys. Chem. C 123 26856Google Scholar

    [12]

    Zhang J, Ding D X, Wei Y, Xu H 2016 Chem. Sci. 7 2870Google Scholar

    [13]

    Fan W L, Shen Y, Deng K M, Chen Q H, Bai Y, Li L 2022 Nano Energy 100 107518Google Scholar

    [14]

    Zhao L C, Tang P Y, Luo D Y, Dar M I, Eickemeyer F T, Arora N, Hu Q, Luo J S, Liu Y H, Zakeeruddin S M, Hagfeldt A, Arbiol J, Huang W, Gong Q H, Russell T P, Friend R H, Grätzel M, Zhu R 2022 Sci. Adv. 8 eabo3733Google Scholar

    [15]

    Hu P, Zhou W B, Chen J L, Xie X, Zhu J W, Zheng Y X, Li Y F, Li J M, Wei M D 2024 Chem. Eng. J. 480 148249Google Scholar

    [16]

    Wu J, Li M H, Fan J T, Li Z, Fan X H, Xue D J, Hu J S 2023 J. Am. Chem. Soc. 145 5872Google Scholar

    [17]

    Li X D, Zhang W X, Guo X M, Lu C Y, Wei J Y, Fang J F 2022 Science 375 434Google Scholar

    [18]

    Khan M T, Hemasiri N H, Kazim S, Ahmad S 2021 Sustain. Energ. Fuels 5 6352Google Scholar

    [19]

    Cha J, Kim M K, Lee W, Jin H, Na H, Cung Tien Nguyen D, Lee S, Lim J, Kim M 2023 Chem. Eng. J. 451 138920Google Scholar

    [20]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Todorović P, Broberg D, Walters G, Tan F R, Zhuang T T, Sun B, Liang Z Q, Yuan H F, Fron E, Kim J, Yang Z Y, Voznyy O, Asta M, Sargent E H 2018 Nat. Commun. 9 3100Google Scholar

  • 图 1  本文采用的电池结构示意图

    Fig. 1.  Schematic diagram of the solar cell structure used in this work.

    图 2  (a)基于SnO2 ETL的SEM图像; (b)基于SnO2:DPEPO ETL的SEM图像; (c)经过以及未经过DPEPO处理的SnO2 ETL薄膜的XPS光谱, Sn-3d信号; (d)经过以及未经过DPEPO处理的SnO2 ETL薄膜的XPS光谱, O-1s信号; (e) SnO2和SnO2:DPEPO作为ETL的器件的电导率数据; (f) SnO2和SnO2:DPEPO ETL薄膜的紫外-可见光透过光谱

    Fig. 2.  (a) SEM image of SnO2 electron transport layer; (b) SEM image of SnO2:DPEPO electron transport layer; (c) XPS spectra of SnO2 ETL films with and without DPEPO treatment, Sn-3d signal; (d) XPS spectra of SnO2 ETL films with and without DPEPO treatment, O-1s signal; (e) conductivity data for devices with SnO2 and SnO2:DPEPO as ETLS; (f) the ultraviolet-visible (UV-Vis) transmittance spectra of SnO2 and SnO2:DPEPO as ETLS.

    图 3  (a)基于SnO2 ETL的CsFAMA钙钛矿SEM表面俯视图像; (b)基于在SnO2: DPEPO双ETL的CsFAMA钙钛矿SEM表面俯视图像; (c)基于SnO2和SnO2:DPEPO ETL的CsFAMA钙钛矿薄膜XRD图谱

    Fig. 3.  (a) Top view SEM image of CsFAMA perovskite surface deposited on SnO2 ETL; (b) top view image SEM of CsFAMA perovskite surface deposited on SnO2:DPEPO ETL; (c) XRD images of CsFAMA perovskite films prepared on SnO2 and SnO2:DPEPO ETLs.

    图 4  (a)纯钙钛矿薄膜以及基于SnO2/CsFAMA以及SnO2:DPEPO/CsFAMA的PL光谱; (b)基于SnO2以及SnO2:DPEPO ETL纯电子器件对数J-V特性曲线; (c)基于SnO2以及SnO2:DPEPO ETL结构器件暗J-V分析对数曲线; (d)基于SnO2以及SnO2:DPEPO ETL结构器件在1 kHz频率下的莫特-肖特基分析

    Fig. 4.  (a) Steady-state PL measurements of pure perovskite thin films and SnO2/CsFAMA and SnO2:DPEPO/CsFAMA; (b) logarithmic J-V characteristic curves of SnO2 and SnO2:DPEPO purely electronic devices; (c) dark J-V analysis of SnO2 and SnO2:DPEPO ETL structured devices; (d) Mott-Schottky analysis of SnO2-based and SnO2:DPEPO ETL structured devices at 1 kHz frequency.

    图 5  (a) 基于SnO2和SnO2:DPEPO作为ETL PSCs的J-V曲线; (b) 基于SnO2和SnO2:DPEPO作为ETL PSCs的IPCE曲线; (c) 基于SnO2和SnO2:DPEPO作为ETL PSCs的环境空气中稳定性测试

    Fig. 5.  (a) J-V curves of PSCs based on SnO2 and SnO2:DPEPO as ETL; (b) IPCE curves based on SnO2 and SnO2:DPEPO as ETL; (c) stability test in ambient air based on SnO2 and SnO2:DPEPO as ETL PSCs.

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc 131 6050Google Scholar

    [2]

    Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar

    [3]

    Deng K M, Chen Q H, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [4]

    Lv J C, Li H X, Chen H Y, Ke L L, Du W J, Xiong J, Zhou C H, Liu G 2023 Appl. Phys. Lett. 122 233501Google Scholar

    [5]

    Dahal B, Guo R, Pathak R, Rezaee M D, Elam J W, Mane A U, Li W J 2023 J. Phys. Chem. Solids 181 111532Google Scholar

    [6]

    Bai C, Dong W, Cai H Y, Zu C P, Yue W, Li H X, Zhao J, Huang F Z, Cheng Y B, Zhong J 2023 Adv. Energy Mater. 13 2300491Google Scholar

    [7]

    Khan U, Iqbal T, Khan M, Wu R 2021 Sol. Energy 223 346Google Scholar

    [8]

    Gan Y J, Qiu G X, Qin B Y, Bi X G, Liu Y C, Nie G C, Ning W L, Yang R Z 2023 Nanomaterials 13 1313Google Scholar

    [9]

    Zhang Y H, Xu L, Sun J, Wu Y J, Kan Z T, Zhang H, Yang L, Liu B, Dong B, Bai X, Song H W 2022 Adv. Energy Mater. 12 2201269Google Scholar

    [10]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802]Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [11]

    Jang H J, Lee J Y 2019 J. Phys. Chem. C 123 26856Google Scholar

    [12]

    Zhang J, Ding D X, Wei Y, Xu H 2016 Chem. Sci. 7 2870Google Scholar

    [13]

    Fan W L, Shen Y, Deng K M, Chen Q H, Bai Y, Li L 2022 Nano Energy 100 107518Google Scholar

    [14]

    Zhao L C, Tang P Y, Luo D Y, Dar M I, Eickemeyer F T, Arora N, Hu Q, Luo J S, Liu Y H, Zakeeruddin S M, Hagfeldt A, Arbiol J, Huang W, Gong Q H, Russell T P, Friend R H, Grätzel M, Zhu R 2022 Sci. Adv. 8 eabo3733Google Scholar

    [15]

    Hu P, Zhou W B, Chen J L, Xie X, Zhu J W, Zheng Y X, Li Y F, Li J M, Wei M D 2024 Chem. Eng. J. 480 148249Google Scholar

    [16]

    Wu J, Li M H, Fan J T, Li Z, Fan X H, Xue D J, Hu J S 2023 J. Am. Chem. Soc. 145 5872Google Scholar

    [17]

    Li X D, Zhang W X, Guo X M, Lu C Y, Wei J Y, Fang J F 2022 Science 375 434Google Scholar

    [18]

    Khan M T, Hemasiri N H, Kazim S, Ahmad S 2021 Sustain. Energ. Fuels 5 6352Google Scholar

    [19]

    Cha J, Kim M K, Lee W, Jin H, Na H, Cung Tien Nguyen D, Lee S, Lim J, Kim M 2023 Chem. Eng. J. 451 138920Google Scholar

    [20]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Todorović P, Broberg D, Walters G, Tan F R, Zhuang T T, Sun B, Liang Z Q, Yuan H F, Fron E, Kim J, Yang Z Y, Voznyy O, Asta M, Sargent E H 2018 Nat. Commun. 9 3100Google Scholar

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [5] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [8] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [9] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [12] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [13] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [14] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [15] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [16] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [17] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [18] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [19] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [20] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
计量
  • 文章访问数:  1010
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-08-09
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回