搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料宽谱光电探测器研究进展

崔月赢 宋俊明 赵伟玮 杨昉 刘宏微 倪振华 吕俊鹏

引用本文:
Citation:

二维材料宽谱光电探测器研究进展

崔月赢, 宋俊明, 赵伟玮, 杨昉, 刘宏微, 倪振华, 吕俊鹏

Research progress of broadband photodetectors based on two-dimensional materials

CUI Yueying, SONG Junming, ZHAO Weiwei, YANG Fang, LIU Hongwei, NI Zhenhua, LU Junpeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着高速成像、航空航天及光通信等领域的快速发展, 对覆盖宽光谱范围且具备高性能的光电探测器需求日益迫切. 二维材料因其独特的结构维度、可调的电子结构以及优异的载流子输运特性等, 被视为宽谱光电探测的理想候选材料. 然而, 实现兼具高响应度与高速响应的宽谱探测器仍面临诸多挑战. 本文首先介绍了二维材料的光电特性基础, 包括带隙调控机制与光谱响应范围、载流子输运及复合过程、光吸收系特性等, 为理解其宽谱探测能力奠定理论基础. 随后, 系统地梳理了窄带隙二维材料、二维拓扑材料以及二维钙钛矿材料体系在宽谱探测中的研究进展. 接下来重点探讨了异质集成、缺陷调控、光场增强以及应变调控等四类提升二维材料光电探测性能的有效途径. 最后, 对二维材料宽谱光电探测器在高性能、低功耗、多功能化及规模化应用方面的挑战与发展前景进行了展望, 指出多种策略的协同集成有望推动新一代宽谱光电探测器的实用化进程.
    The increasing demands for high-speed imaging, aerospace, and optical communication have driven in-depth research on broadband photodetectors with high sensitivity and fast response. Two-dimensional (2D) materials have atomic-scale thickness, tunable bandgaps, and excellent carrier transport properties, making them ideal candidates for next-generation optoelectronics. However, their limited light absorption and intrinsic recombination losses remain key challenges. This paper provides an overview of recent progress of 2D-material-based broadband photodetectors. First, the fundamental optoelectronic properties of 2D materials, including bandgap modulation, carrier dynamics, and light–matter interactions, are discussed to clarify their broadband detection potential. Representative material systems, such as narrow-band gap semiconductors, 2D topological materials, and perovskites, are summarized, showing the detection ability from the ultraviolet to the mid-infrared regions. To overcome intrinsic limitations, four optimization strategies are highlighted: heterostructure engineering for efficient charge separation and extended spectral response; defect engineering to introduce mid-gap states and enhance sub-bandgap absorption; optical field enhancement through plasmonic nanostructures and optical cavities to improve responsivity; strain engineering for reversible band structure tuning, particularly suited for flexible devices. These strategies have achieved significant improvements in responsivity, detectivity, and bandwidth, with some devices implementing ultrabroadband detection and multifunctionality. In summary, 2D materials and their hybrids have shown great potential in broadband photodetection, with progress made in material innovation and device architecture optimization. The reviewed strategies—heterostructure integration, defect modulation, optical field enhancement, and strain engineering—collectively demonstrate the different ways of overcoming intrinsic limitations and improving device performance. Looking ahead to the future, the reasonable combination of these methods is expected to further expand the detection window, improve sensitivity, and achieve multifunctional operations, thereby paving the way for the multifunctional applications of the next-generation broadband photodetectors in imaging, sensing, and optoelectronic systems
  • 图 1  典型二维材料及其带隙范围[11]. 图中展示了多种二维材料及其晶体结构的侧视图, 并按带隙大小从左至右排列. 每种材料下方的线条表示其从块体到单层的带隙变化范围. 黑线表示单层带隙大于块体带隙, 红线则表示相反情况. 左侧灰框中为零带隙或近零带隙的金属或半金属材料. 下方带隙/波长坐标轴用于显示各材料对应的光谱响应能力

    Fig. 1.  Typical 2D materials and their bandgap ranges. Figure shows side views of a variety of 2D materials and their crystal structures, arranged from left to right by bandgap size. The lines below each material indicate the range of bandgap variation from bulk to monolayer. The black line indicates that the monolayer bandgap is larger than the bulk bandgap, and the red line indicates the opposite. The gray box on the left is a metal or semimetal material with zero or near-zero bandgap. The bandgap/wavelength coordinate axis below is used to show the spectral response capability of each material. Reproduced from Ref. [11], with the permission of Springer Nature.

    图 2  基于二维材料的复合结构示意图以及实例 (a) 二维材料与其他材料复合示意图[44]; (b) 全二维材料复合结构[45]; (c) 二维材料与体材料复合结构[46]; (d) 二维材料与量子点材料复合体系[47]

    Fig. 2.  Schematic diagrams of composite structures based on two-dimensional materials and examples: (a) Schematic diagram of two-dimensional materials composited with other materials (Reproduced from Ref. [44], with the permission of Springer Nature); (b) all two-dimensional material composite structure (Reproduced from Ref. [45], with the permission of John Wiley and Sons); (c) two-dimensional material and bulk material composite structure (Reproduced from Ref. [46], with the permission of American Chemical Society); (d) two-dimensional material and quantum dot material composite system(Reproduced from Ref. [47], with the permission of American Chemical Society).

    图 3  (a) 黑磷的晶体结构示意图和固有黑磷、砷(As)元素掺杂、碳(C)元素掺杂以及通过电场和应变调谐的的中红外光响应[53]; (b) 黑磷带隙的层数依赖性[54]; (c) 黑磷光电探测器的光响应率[55]; (d), (e) 砷掺杂黑磷光电探测器的示意图以及其光响应度和外量子效率[56]

    Fig. 3.  (a) Schematic diagram of the crystal structure of BP and mid-infrared optical response of pristine BP, arsenic (As) element-doped, carbon (C) element-doped, and electric field and strain-tuned BP (Reproduced from Ref. [53], with the permission of John Wiley and Sons); (b) layer dependence of the bandgap of BP (Reproduced from Ref. [54], with the permission of American Physical Society); (c) photoresponsivity of BP photodetector. (Reproduced from Ref. [55], with the permission of Springer Nature); (d), (e) schematic diagram of arsenic-doped BP photodetector and its photoresponsivity and EQE (Reproduced from Ref. [56], with the permission of the authors).

    图 4  (a) PdSe2光电探测器的结构示意图以及多层PdSe2的吸收光谱[62]; (b) In2Se3光电探测器的结构示意图及其在不同波长下的响应度[63]; (c) SnS光电探测器的结构示意图以及SnS薄膜的吸收光谱[64]

    Fig. 4.  (a) Schematic diagram of the PdSe2 photodetector structure and absorption spectrum of multilayer PdSe2 (Reproduced from Ref. [62], with the permission of John Wiley and Sons); (b) schematic diagram of the In2Se3 photodetector structure and its responsivity R at different wavelengths (Reproduced from Ref. [63], with the permission of IOP Publishing); (c) schematic diagram of the SnS photodetector structure and absorption spectrum of SnS film (Reproduced from Ref. [64], with the permission of IOP Publishing).

    图 5  (a), (b) 拓扑绝缘体[67]和拓扑半金属(狄拉克半金属、外尔半金属和节点线半金属)[68]的能带结构示意图; (c) 各种拓扑绝缘体的带隙值及其相应的检测范围[67]; (d) 部分二维层状拓扑半金属的检测范围[68]

    Fig. 5.  (a), (b) Schematic diagrams of energy band structures of topological insulator (Reproduced from Ref. [67], with the permission of Elsevier) and topological semimetals (Dirac semimetal, Weyl semimetal, and nodal line semimetal) (Reproduced from Ref. [68], with the permission of John Wiley and Sons); (c) bandgap values of various topological insulators (TI) and their corresponding detection ranges (Reproduced from Ref. [67], with the permission of Elsevier); (d) detection ranges of some 2D layered topological semimetals (LTSM) (Reproduced from Ref. [68], with the permission of John Wiley and Sons).

    图 6  (a) 二维钙钛矿的结构示意图[82]; (b), (c) 在钙钛矿材料(CH3(CH2)3NH3)2(CH3NH3)n–1PbnI3n+1中, 通过改变Pb的含量(n)可以调控其带隙大小[83]; (c) 钙钛矿材料(C4H9NH3)n(CH3NH3)n–1PbnI3n+1的迁移率和电导随量子阱厚度的变化, 表明其潜在的高光电转换效率[84]

    Fig. 6.  (a) Schematic diagram of the structure of two-dimensional perovskite (Reproduced from Ref. [82], with the permission of Elsevier); (b), (c) in perovskite material (CH3(CH2)3NH3)2(CH3NH3)n–1PbnI3n+1, the bandgap can be tuned by varying the Pb content (n) (Reproduced from Ref. [83], with the permission of Springer Nature); (c) mobility and conductance of perovskite material (C4H9NH3)n(CH3NH3)n–1PbnI3n+1 as a function of quantum well thickness, demonstrating its potential for high photoelectric conversion efficiency (Reproduced from Ref. [84], with the permission of American Chemical Society).

    图 7  (a) MoSe2/WSe2 异质结的器件结构与能带结构示意图[89]; (b) MoTe2/ReS2 异质结构在不同波长下的响应度以及其器件结构与能带结构示意图[90]; (c) 石墨烯与WS2-WSe2超结构的器件结构与能带结构示意图[91]

    Fig. 7.  (a) Schematic diagrams of device structure and energy band structure of MoSe2/WSe2 heterostructure (Reproduced from Ref. [89], with the permission of John Wiley and Sons); (b) responsivity of MoTe2/ReS2 heterostructure at different wavelengths and schematic diagrams of device structure and energy band structure (Reproduced from Ref. [90], with the permission of American Chemical Society); (c) schematic diagrams of device structure and energy band structure of graphene and WS2-WSe2 superlattice (Reproduced from Ref. [91], with the permission of American Chemical Society).

    图 8  (a)—(c) ReS2/MoS2量子点异质结构的示意图及其在不同探测波长下的响应度和能带结构示意图[92]; (d), (e) PbI2/Sb2S3纳米线的器件图及其在不同探测波长下的响应度[93]; (f), (g) MoS2/GaN异质结构的示意图及其在不同探测波长下的响应度[94]

    Fig. 8.  (a)–(c) Schematic diagram of ReS2/MoS2 quantum dot heterostructure and its responsivity at different detection wavelengths and energy band structure diagram (Reproduced from Ref. [92], with the permission of American Chemical Society); (d), (e) device diagram of PbI2/Sb2S3 nanowires and their responsivity at different detection wavelengths (Reproduced from Ref. [93], with the permission of Royal Society of Chemistry); (f), (g) schematic diagram of MoS2/GaN heterostructure and its responsivity at different detection wavelengths (Reproduced from Ref. [94], with the permission of American Chemical Society).

    图 9  (a) 超宽带WS2/AlOx/Ge异质结光电探测器的结构和能带示意图, 以及其在不同波长下的比探测率[100]; (b) 二维α-Ga2Se3器件结构示意图及其在不同探测波长和暗态条件下的IV特性曲线, 以及相应的光响应度和开关比[101]; (c) 二维LiInP2Se6器件结构示意图以及其532 nm下的比探测率和其他波长下的光响应[102]

    Fig. 9.  (a) Structure and energy band diagram of ultra-broadband WS2/AlOx/Ge heterostructure photodetector and its specific detectivity at different wavelengths (Reproduced from Ref. [100], with the permission of American Chemical Society); (b) schematic diagram of two-dimensional α-Ga2Se3 device structure and its I-V characteristic curves under different detection wavelengths and dark conditions, along with the corresponding photoresponsivity and on/off ratio (Reproduced from Ref. [101], with the permission of John Wiley and Sons); (c) schematic diagram of two-dimensional LiInP2Se6 device structure and its specific detectivity at 532 nm and photoresponse at other wavelengths (Reproduced from Ref. [102], with the permission of American Chemical Society).

    图 10  (a) 引入金纳米颗粒的p-MoS2/n-ZnO异质结结构示意图及其在不同响应波长下的性能提升对比[106]; (b) 单壁碳纳米管/石墨烯异质结三维光电探测器结构示意图及其在不同探测波长下的响应度[109]

    Fig. 10.  (a) Schematic diagram of p-MoS2/n-ZnO heterostructure with incorporated gold nanoparticles and performance enhancement comparison at different response wavelengths (Reproduced from Ref. [106], with the permission of Elsevier); (b) schematic diagram of single-walled carbon nanotube/graphene heterostructure three-dimensional photodetector structure and its responsivity at different detection wavelengths (Reproduced from Ref. [109], with the permission of RSC Pub).

    图 11  (a), (b) 不同应变条件下光电流变化的时间响应, 以及在紫外和可见光照射下光响应度随应变变化的关系图[114]; (c), (d) MoS2/Sb2Te3异质结的结构示意图及其在不用应变下的响应度变化[115]

    Fig. 11.  (a), (b) Temporal response of photocurrent changes under different strain conditions and the relationship between photoresponsivity and strain under ultraviolet and visible light illumination (Reproduced from Ref. [114], with the permission of IOP Publishing); (c), (d) schematic diagram of MoS2/Sb2Te3 heterostructure and its responsivity variation under different strains (Reproduced from Ref. [115], with the permission of MDPI).

    表 1  二维拓扑材料及其异质结构的光电性能

    Table 1.  Optoelectronic properties of two-dimensional topological materials and their heterostructures.

    材料 探测波长 比探测率 响应度 参考文献
    λ/nm D*/Jones R/(A·W–1)
    Bi2Te3 325—1500 3.8×109 74 [69]
    SnTe 405—3800 3.75 [70]
    Pb1–xSnxSe 375—2000 1.14×1012 0.21 [75]
    SnTe/Si 254—1550 8.4×1012 0.128 [76]
    Bi2Te3/Si 370—118000 2.5×1011 11 [77]
    Graphene/Bi2Te3/GaAs 405—4500 3.1×1012 0.67 [78]
    PtTe2 0.02—0.3 THz 1.98 [73]
    Td-MoTe2 325—566000 3.8×10–3 [74]
    TaIrTe4 0.1—10 THz 18 [79]
    NbIrTe4/Graphene 0.02—0.3 THz 264.6 V/W [80]
    TaIrTe4/WSe2 405—808 3.09×1012 9.1 [81]
    下载: 导出CSV
  • [1]

    Guan R Q, Xu H, Lou Z, Zhao Z, Wang L L 2024 Adv. Sci. 11 2402530Google Scholar

    [2]

    Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30Google Scholar

    [3]

    Mearaj T, Farooq A, Hafiz A K, Khanuja M, Zargar R A, Bhat A A 2024 ACS Appl. Bio Mater. 7 3483Google Scholar

    [4]

    Ma T J, Xue N, Muhammad A, Fang G, Yan J Y, Chen R K, Sun J H, Sun X G 2024 Micromachines 15 1249Google Scholar

    [5]

    Liu X Z, Yang X Z, Tang Q, Lv Y, Zhang G, Feng W L 2024 J. Phys. D: Appl. Phys. 57 373002Google Scholar

    [6]

    Yao J D, Yang G W 2020 Nanoscale 12 454Google Scholar

    [7]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [8]

    Long M S, Wang P, Fang H H, Hu W D 2019 Adv. Funct. Mater. 29 1803807Google Scholar

    [9]

    Shuck C E, Xiao X, Wang Z Y 2024 Acc. Chem. Res. 57 3079Google Scholar

    [10]

    Song J M, Yu Y F, Zheng T, Cui Y Y, Chen Q S, Zhao W W, Yang F, Lu J P, Liu H W, Ni Z H 2025 Appl. Phys. Lett. 126 043102Google Scholar

    [11]

    Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X R, Low T 2020 npj 2D Mater. Appl. 4 29Google Scholar

    [12]

    Tian Y, Liu H, Li J, Liu B D, Liu F 2025 Nanomaterials 15 431Google Scholar

    [13]

    Dhanabalan S C, Ponraj J S, Zhang H, Bao Q L 2016 Nanoscale 8 6410Google Scholar

    [14]

    Zulfiqar M W, Nisar S, Dastgeer G, Rabeel M, Ghazanfar H, Ali A, Imran M, Kim H, Kim D K 2025 Nanoscale 17 17881Google Scholar

    [15]

    Rani A, Verma A, Yadav B C 2024 Mater. Adv. 5 3535Google Scholar

    [16]

    Li X, Liu K X, Wu D, Lin P, Shi Z F, Li X J, Zeng L H, Chai Y, Lau S P, Tsang Y H 2025 Adv. Mater. n/a 2415717

    [17]

    Hosseini M, Elahi M, Pourfath M, Esseni D 2015 IEEE Trans. Electron Devices 62 3192Google Scholar

    [18]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [19]

    Xiang D, Han C, Zhang J L, Chen W 2014 Sci. Rep. 4 4891Google Scholar

    [20]

    Shu H B, Li Y H, Niu X H, Wang J L 2016 ACS Appl. Mater. Interfaces 8 13150Google Scholar

    [21]

    Yin C D, He S X, Fan X F, Xiao Y K, Zhao L C, Gao L M 2024 Adv. Opt. Mater. 12 2401122Google Scholar

    [22]

    Ouyang Y, Zhang C Y, Wang J, Guo Z, Wang Z G, Dong M D 2025 Adv. Sci. 12 2416259Google Scholar

    [23]

    Liao L, Peng H L, Liu Z F 2014 J. Am. Chem. Soc. 136 12194Google Scholar

    [24]

    Tiwari S K, Sahoo S, Wang N N, Huczko A 2020 J. Sci. : Adv. Mater. Devices 5 10Google Scholar

    [25]

    Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611Google Scholar

    [26]

    Rai A, Movva H C P, Roy A, Taneja D, Chowdhury S, Banerjee S K 2018 Crystals 8 316Google Scholar

    [27]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [28]

    Xu Y J, Yuan J, Zhang K, Hou Y, Sun Q, Yao Y M, Li S J, Bao Q L, Zhang H, Zhang Y G 2017 Adv. Funct. Mater. 27 1702211Google Scholar

    [29]

    Zhang M, Biesold G M, Lin Z Q 2021 Chem. Soc. Rev. 50 13346Google Scholar

    [30]

    Mu X, Wang J, Sun M 2019 Mater. Today Phys. 8 92Google Scholar

    [31]

    Han F W, Xu W, Li L L, Zhang C, Dong H M, Peeters F M 2017 Phys. Rev. B 95 115436Google Scholar

    [32]

    Long G, Maryenko D, Shen J Y, Xu S G, Hou J Q, Wu Z F, Wong W K, Han T Y, Lin J X Z, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768Google Scholar

    [33]

    Sun Y H, Wang R M, Liu K 2017 Appl. Phys. Rev. 4 011301Google Scholar

    [34]

    Zhang X L, Huang J C, Zuo H Z, Zhang Y F, Yang R Z, Chen J L, Li G J, Li W, Peng Z Y 2025 Sol. Energy Mater. Sol. Cells 292 113798Google Scholar

    [35]

    Liu F, Fan Z X 2023 Chem. Soc. Rev. 52 1723Google Scholar

    [36]

    Zhang X J, Shao Z B, Zhang X H, He Y Y, Jie J S 2016 Adv. Mater. 28 10409Google Scholar

    [37]

    Malik M, Iqbal M A, Choi J R, Pham P V 2022 Front. Chem. 10 905404Google Scholar

    [38]

    Xu Y J, Shen H L, Wu D, Zhao Q C, Wang Z H, Ge J W, Zhang W 2022 J. Alloys Compd. 902 163878Google Scholar

    [39]

    舒衍涛, 张有为, 王顺 2021 物理学报 70 177301Google Scholar

    Shu Y T, Zhang Y W, Wang S 2021 Acta Phys. Sin. 70 177301Google Scholar

    [40]

    Hanbicki A T, Currie M, Kioseoglou G, Friedman A L, Jonker B T 2015 Solid State Commun. 203 16Google Scholar

    [41]

    Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [42]

    Xu Y H, Liu J Q 2016 Small 12 1400Google Scholar

    [43]

    Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595Google Scholar

    [44]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [45]

    Gao S, Wang Z Q, Wang H D, Meng F X, Wang P F, Chen S, Zeng Y H, Zhao J L, Hu H G, Cao R, Xu Z Q, Guo Z N, Zhang H 2021 Adv. Mater. Interfaces 8 2001730Google Scholar

    [46]

    Shin G H, Park J, Lee K J, Lee G B, Jeon H B, Choi Y K, Yu K, Choi S Y 2019 ACS Appl. Mater. Interfaces 11 7626Google Scholar

    [47]

    Gong M G, Liu Q F, Cook B, Kattel B, Wang T, Chan W L, Ewing D, Casper M, Stramel A, Wu J Z 2017 ACS Nano 11 4114Google Scholar

    [48]

    Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123Google Scholar

    [49]

    Zhou J S, Yang J H, Wei Z M 2020 J. Semicond. 41 080401Google Scholar

    [50]

    Wang P Q, Jia C C, Huang Y, Duan X F 2021 Matter 4 552Google Scholar

    [51]

    Mukherjee S, Bhattacharya D, Patra S, Paul S, Mitra R K, Mahadevan P, Pal A N, Ray S K 2022 ACS Appl. Mater. Interfaces 14 5775Google Scholar

    [52]

    Dong T, Simões J, Yang Z C 2020 Adv. Mater. Interfaces 7 1901657Google Scholar

    [53]

    Zhang L, Wang B, Zhou Y H, Wang C, Chen X L, Zhang H 2020 Adv. Opt. Mater. 8 2000045Google Scholar

    [54]

    Rudenko A N, Yuan S, Katsnelson M I 2015 Phys. Rev. B 92 085419Google Scholar

    [55]

    Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F N 2017 Nat. Commun. 8 1672Google Scholar

    [56]

    Long M S, Gao A Y, Wang P, Xia H, Ott C, Pan C, Fu Y J, Liu E, Chen X S, Lu W, Nilges T, Xu J, Wang X M, Hu W D, Miao F 2017 Sci. Adv. 3 e1700589Google Scholar

    [57]

    Xu M, Gu Y Q, Peng R M, Youngblood N, Li M 2017 Appl. Phys. B 123 130

    [58]

    Suess R J, Leong E, Garrett J L, Zhou T, Salem R, Munday J N, Murphy T E, Mittendorff M 2016 2D Mater. 3 041006Google Scholar

    [59]

    Shen C F, Liu Y H, Wu J B, Xu C, Cui D Z, Li Z, Liu Q Z, Li Y R, Wang Y X, Cao X, Kumazoe H, Shimojo F, Krishnamoorthy A, Kalia R K, Nakano A, Vashishta P D, Amer M R, Abbas A N, Wang H, Wu W Z, Zhou C W 2020 ACS Nano 14 303Google Scholar

    [60]

    Amani M, Tan C L, Zhang G, Zhao C S, Bullock J, Song X H, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M, Javey A 2018 ACS Nano 12 7253Google Scholar

    [61]

    Niu Y Y, Wu D, Su Y Q, Zhu H, Wang B, Wang Y X, Zhao Z R, Zheng P, Niu J S, Zhou H B, Wei J, Wang N L 2018 2D Mater. 5 011008

    [62]

    Liang Q J, Wang Q X, Zhang Q, Wei J X, Lim S X, Zhu R, Hu J X, Wei W, Lee C, Sow C, Zhang W J, Wee A T S 2019 Adv. Mater. 31 1807609Google Scholar

    [63]

    Feng W, Gao F, Hu Y X, Dai M J, Li H, Wang L F, Hu P A 2018 Nanotechnology 29 445205Google Scholar

    [64]

    Zhang B, Liu Y J, Hu B, Guo F H, Zhang M C, Li S Q, Yu W Z, Hao L Z 2024 2D Mater. 11 025024Google Scholar

    [65]

    Yan B H, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [66]

    Kou L Z, Ma Y D, Sun Z, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905Google Scholar

    [67]

    Yang M, Zhou H X, Wang J 2022 Mater. Today Commun. 33 104190Google Scholar

    [68]

    Yu H H, Zeng H R, Zhang Y Z, Liu Y H, ShangGuan W, Zhang X K, Zhang Z, Zhang Y 2025 Adv. Funct. Mater. 35 2412913Google Scholar

    [69]

    Sharma A, Srivastava A K, Senguttuvan T D, Husale S 2017 Sci. Rep. 7 17911Google Scholar

    [70]

    Jiang T, Zang Y Y, Sun H H, Zheng X, Liu Y, Gong Y, Fang L, Cheng X A, He K 2017 Adv. Opt. Mater. 5 1600727Google Scholar

    [71]

    Li Y, Yu W Z, Zhang K, Cui N, Yun T H, Xia X, Jiang Y, Zhang G Y, Mu H R, Lin S H 2024 Mater. Horiz. 11 2572Google Scholar

    [72]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [73]

    Dong Z, Yu W Z, Zhang L B, Yang L, Huang L Y, Zhang Y, Ren Z Q, Mu H R, Chen C, Zhang J R, Li J, Wang L, Zhang K 2023 InfoMat 5 e12403Google Scholar

    [74]

    Yang Q, Wang X M, He Z H, Chen Y J, Li S W, Chen H J, Wu S X 2023 Adv. Sci. 10 2205609Google Scholar

    [75]

    Wang Q S, Wen Y, Yao F R, Huang Y, Wang Z X, Li M L, Zhan X Y, Xu K, Wang F M, Wang F, Li J, Liu K H, Jiang C, Liu F Q, He J 2015 Small 11 5388Google Scholar

    [76]

    Gu S H, Ding K, Pan J, Shao Z B, Mao J, Zhang X J, Jie J S 2017 J. Mater. Chem. A 5 11171Google Scholar

    [77]

    Yao J D, Shao J M, Wang Y X, Zhao Z R, Yang G W 2015 Nanoscale 7 12535Google Scholar

    [78]

    Zhang X C, Liu X C, Zhang C Y, Peng S L, Zhou H X, He L, Gou J, Wang X R, Wang J 2022 ACS Nano 16 4851Google Scholar

    [79]

    Xi T R, Jiang H T, Li J X, He Y C, Gu Y C, Fox C, Primeau L, Mao Y L, Rollins J, Taniguchi T, Watanabe K, van der Weide D, Rhodes D, Zhang Y, Wang Y, Xiao J 2025 Nat. Electron. 8 578Google Scholar

    [80]

    He Y, Yang L, Hu Z, Zhang L B, Pan X K, Wei Y, Guo S G, Lv X Y, Jiang M J, Han L, Wang D, Lan S Q, Sun X, Chen X S, Zhang K, Wang L 2024 Adv. Funct. Mater. 34 2311008Google Scholar

    [81]

    Ye Q J, Lu J T, Yi H X, Zheng Z Q, Ma C R, Du C, Zou Y C, Yao J D, Yang G W 2022 Appl. Phys. Lett. 120 181104Google Scholar

    [82]

    Kim E B, Akhtar M S, Shin H S, Ameen S, Nazeeruddin M K 2021 J. Photochem. Photobiol. , C 48 100405Google Scholar

    [83]

    Leng K, Abdelwahab I, Verzhbitskiy I, Telychko M, Chu L Q, Fu W, Chi X, Guo N, Chen Z H, Chen Z X, Zhang C, Xu Q H, Lu J, Chhowalla M, Eda G, Loh K P 2018 Nat. Mater. 17 908Google Scholar

    [84]

    Wang K, Wu C C, Yang D, Jiang Y Y, Priya S 2018 ACS Nano 12 4919Google Scholar

    [85]

    Zha Y F, Wang Y, Sheng Y H, Zhang X W, Shen X Y, Xing F J, Liu C H, Di Y S, Cheng Y C, Gan Z X 2022 Appl. Phys. Lett. 121 191904Google Scholar

    [86]

    Liu Y, Wu C J, Guan X N, Lu P F, Chen W, Zhao F Y, Gu C J, Shen X 2025 ACS Appl. Electron. Mater. 7 2128Google Scholar

    [87]

    Wei S L, Wang F, Zou X M, Wang L M, Liu C, Liu X Q, Hu W D, Fan Z Y, Ho J C, Liao L 2020 Adv. Mater. 32 1907527Google Scholar

    [88]

    Li Z Q, Hong E L, Zhang X Y, Deng M, Fang X S 2022 J. Phys. Chem. Lett. 13 1215Google Scholar

    [89]

    Xue H, Wang Y D, Dai Y Y, Kim W, Jussila H, Qi M, Susoma J, Ren Z Y, Dai Q, Zhao J L, Halonen K, Lipsanen H, Wang X M, Gan X T, Sun Z P 2018 Adv. Funct. Mater. 28 1804388Google Scholar

    [90]

    Ahn J, Kyhm J H, Kang H K, Kwon N, Kim H K, Park S, Hwang D K 2021 ACS Photonics 8 2650Google Scholar

    [91]

    Tsai M Y, Tsai T H, Gandhi A C, Lu H L, Li J X, Chen P L, Chen K W, Chen S Z, Chen C H, Liu C H, Lin Y F, Chiu P W 2023 ACS Nano 17 25037Google Scholar

    [92]

    Polumati G, Kolli C S R, Flores M, Kumar A, Sanghvi A, Bugallo A D L, Sahatiya P 2024 ACS Appl. Mater. Interfaces 16 19261Google Scholar

    [93]

    Fu S L, Liu X H, Man J X, Ou Q H, Zheng X L, Liu Z Y, Zhu T, Wang H E 2024 J. Mater. Chem. C 12 3353Google Scholar

    [94]

    Jain S K, Low M X, Taylor P D, Tawfik S A, Spencer M J S, Kuriakose S, Arash A, Xu C L, Sriram S, Gupta G, Bhaskaran M, Walia S 2021 ACS Appl. Electron. Mater. 3 2407Google Scholar

    [95]

    Jia Y F, Wei X, Zhang Z H, Liu J, Tian Y, Zhang Y, Guo T T, Fan J B, Ni L, Luan L J, Duan L 2021 CrystEngComm 23 1033Google Scholar

    [96]

    Wu E P, Wu D, Jia C, Wang Y G, Yuan H Y, Zeng L H, Xu T T, Shi Z F, Tian Y T, Li X J 2019 ACS Photonics 6 565Google Scholar

    [97]

    吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301Google Scholar

    Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301Google Scholar

    [98]

    Jiang J, Xu T, Lu J P, Sun L T, Ni Z H 2019 Research 2019 4641739

    [99]

    Song J M, Zheng T, Wei X, Zhao X W, Cui Y Y, Sun C D, Zhang Y, Wei Z Y, Zhao W W, Lu J P, Ni Z H 2024 ACS Appl. Nano Mater. 7 1598Google Scholar

    [100]

    Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119Google Scholar

    [101]

    Zhou N, Li H R, Li X B, Dang Z W, Sun Z D, Deng S J, Li J H, Xie Y, Xu H, Xia F F, Zhai T Y 2024 Small Struct. 5 2400062Google Scholar

    [102]

    Sun L J, Wang S L, Ma C, Wei L M, Tao X T, Wang S P 2024 ACS Appl. Opt. Mater. 2 679Google Scholar

    [103]

    Peng L S, Zheng T, Wu Z T, Zheng L, Zhang Y 2025 J. Alloys Compd. 1011 178338Google Scholar

    [104]

    Li L, Wu Q Q, Wang C L, Cai Z Y, Lin L L, Gu X F, Ostrikov K K, Nan H Y, Xiao S Q 2024 ACS Photonics 11 2615Google Scholar

    [105]

    Alamri M, Gong M G, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390Google Scholar

    [106]

    Zhang J, Zhang X L, Li J, Ma Z Y, Leng B, Xia Q X, Shen L H, Song Y D, Fu Z W, Feng S Y, Feng L Z, Liu Z T, Yuldashev S, Jiang X, Liu B D 2022 Opt. Mater. 124 111997Google Scholar

    [107]

    Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J 2016 ACS Photonics 3 2515Google Scholar

    [108]

    Jiang F Q, Shi M D, Zhou J, Bu Y, Ao J P, Chen X S 2021 Adv. Photonics Res. 2 2000187Google Scholar

    [109]

    Zhang Y, Li Y N, You Q, Sun J Y, Li K, Hong H, Kong L B, Zhu M Q, Deng T, Liu Z W 2023 Nanoscale 15 1402Google Scholar

    [110]

    Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557Google Scholar

    [111]

    Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330Google Scholar

    [112]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [113]

    Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104Google Scholar

    [114]

    Sahatiya P, Solomon Jones S, Thanga Gomathi P, Badhulika S 2017 2D Mater. 4 025053Google Scholar

    [115]

    Wang H, Dong C B, Gui Y L, Ye J, Altaleb S, Thomaschewski M, Movahhed Nouri B, Patil C, Dalir H, Sorger V J 2023 Nanomaterials 13 1973Google Scholar

    [116]

    Lu D L, Chen Y, Kong L, Luo C B, Lu Z Y, Tao Q Y, Song W J, Ma L K, Li Z W, Li W Y, Liu L T, Li Q Y, Yang X D, Li J, Li J, Duan X D, Liao L, Liu Y 2022 Small 18 2107104Google Scholar

  • [1] 陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣. 非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化. 物理学报, doi: 10.7498/aps.74.20250849
    [2] 蔡尘, 孙华聪, 李佳蔚, 张广宇, 白雪冬. WS2-MoSe2二维平面异质结界面原子结构的积分相位差分衬度成像. 物理学报, doi: 10.7498/aps.74.20250441
    [3] 程龄莹, 张华芳, 毛艳丽. 高压下二维材料结构和光电性能研究进展. 物理学报, doi: 10.7498/aps.74.20251034
    [4] 石旗, 田茂鑫, 杨权, 张晓伟, 赵昱达. 基于二维材料光电器件的传感器内计算与应用进展. 物理学报, doi: 10.7498/aps.74.20251093
    [5] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展. 物理学报, doi: 10.7498/aps.74.20241590
    [6] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, doi: 10.7498/aps.72.20231423
    [7] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, doi: 10.7498/aps.72.20230528
    [8] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, doi: 10.7498/aps.72.20230729
    [9] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, doi: 10.7498/aps.71.20220085
    [10] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [11] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, doi: 10.7498/aps.71.20212399
    [12] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, doi: 10.7498/aps.71.20212033
    [13] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, doi: 10.7498/aps.71.20220407
    [14] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, doi: 10.7498/aps.71.20211902
    [15] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [16] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [17] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, doi: 10.7498/aps.70.20201325
    [18] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, doi: 10.7498/aps.69.20201235
    [19] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, doi: 10.7498/aps.69.20200452
    [20] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, doi: 10.7498/aps.69.20191486
计量
  • 文章访问数:  550
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 修回日期:  2025-09-10
  • 上网日期:  2025-09-17

/

返回文章
返回