搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元增强范德瓦耳斯光电探测器偏振性能研究进展

菅佳玲 钱科宇 王子坚 苏雨辰 翁正进 肖少庆 南海燕

引用本文:
Citation:

等离激元增强范德瓦耳斯光电探测器偏振性能研究进展

菅佳玲, 钱科宇, 王子坚, 苏雨辰, 翁正进, 肖少庆, 南海燕

Research progress of polarization performance of plasmon-enhanced van der Waals photodetectors

JIAN Jialing, QIAN Keyu, WANG Zijian, SU Yuchen, WENG Zhengjin, XIAO Shaoqing, NAN Haiyan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 偏振探测是获取光矢量信息的重要手段, 广泛应用于光通信、智能感知与生物传感等领域. 二维范德瓦耳斯材料因其独特的各向异性与可调电学特性, 为实现高性能偏振探测提供了新的材料平台, 但这类材料存在本征吸收弱、响应效率有限等局限性. 等离激元结构可在微纳尺度实现强局域光场调控, 是突破上述局限性、提升探测性能的重要手段. 本文系统梳理了等离激元微纳结构与范德瓦耳斯材料的光学耦合机制, 分析了不同类型等离激元结构在各类偏振光探测中的作用与优势. 最后, 讨论了该方向在偏振敏感光通信、片上光计算与信息处理、仿真视觉与图像识别等前沿领域的应用前景, 展望了未来研究面临的机遇与挑战.
    Polarization detection is a fundamental way to obtain the vectorial nature of light, supporting advanced technologies in the fields of optical communication, intelligent sensing, and biosensing. Two-dimensional van der Waals materials have become a promising platform for high-performance polarization-sensitive photodetectors due to their inherent anisotropy and tunable electronic properties. Nevertheless, their intrinsically weak light absorption and limited photoresponse efficiency remain major bottlenecks. Plasmonic nanostructures, which can achieve strong localized field confinement and manipulation on a nanoscale, provide an effective strategy to overcome these limitations and substantially improve device performance. In this review, we systematically summarize the coupling mechanisms between plasmonic architectures and vdW materials, highlighting near-field enhancement, plasmon-induced hot-carrier generation, and mode-selective polarization coupling as key physical processes for enhancing photocarrier generation and polarization extinction. Representative devices including metallic gratings, hybrid nanoantennas, and chiral metasurfaces are compared in terms of responsivity, detection speed, operating bandwidth, and polarization extinction ratio, revealing consistent improvements of one to two orders of magnitude over bare vdW devices. We further survey emerging applications in the fields of high-speed polarization-encoded optical communication, on-chip optical computing and information processing, and bioinspired vision and image recognition systems, where plasmonic-vdW hybrid detectors demonstrate unique advantages in miniaturization and energy efficiency. Finally, we discuss current challenges such as large-scale fabrication of uniform plasmonic arrays, spectral bandwidth broadening, and seamless integration with complementary photonic circuits, and outline future opportunities for next-generation polarization-resolved optoelectronic platforms.
  • 图 1  本文主要内容示意, 共分为二维材料、等离激元结构、等离激元的增强机制以及应用4个部分

    Fig. 1.  Schematic illustration of the main content of the article, divided into four parts: two-dimensional materials, plasmonic structures, enhancement mechanisms of plasmons, and applications.

    图 2  (a) SPPs在两种介质界面处的物理模型示意图[22]; (b) SPPs在金属与空气(灰色曲线)及二氧化硅(黑色曲线)界面处的色散关系[23]; (c) 纳米粒子中LSPRs的物理模型示意图[19]; (d) LSPR中亚波长金属纳米粒子的相位相对于驱动场频率的分布[23]; (e) 在半径为R的球形散射体内部区域, 产生电磁辐射并形成各米氏散射的特近场分布[34]; (f) 基于Mie散射下的金纳米球等离激元共振线宽[23]

    Fig. 2.  (a) Schematic diagram of the physical model of SPPs at the interface between two media[22]; (b) dispersion relationship of SPPs at the interface between metal and air (gray curve) and silicon dioxide (black curve)[23]; (c) schematic diagram of the physical model of LSPRs in nanoparticles[19]; (d) phase distribution of subwavelength metal nanoparticles in LSPRs relative to the driving field frequency[23]; (e) near-field distribution within the spherical scattering body of radius R that generates electromagnetic radiation and forms Mie scattering[34]; (f) plasmon resonance linewidth of gold nanoparticles based on Mie scattering[23].

    图 3  不同形状纳米颗粒的FDTD电场分布模拟仿真 (a)直径为30, 50, 80和100 nm纳米球的电场分布[45]; (b)核壳结构的电场分布[46]; (c)微米ITO纳米棒天线与微米ITO二聚体天线的电场分布[47]; (d)三角粒子光谱中分别以1.75, 2.70和3.20 eV为中心的电场分布[48]

    Fig. 3.  FDTD electric field distribution simulation of nanoparticles with different shapes: (a) Electric field distribution of spheres with diameters of 30, 50, 80, and 100 nanometers[45]; (b) electric field distribution of core-shell structure[46]; (c) electric field diagrams of micro-ITO nanorods and micro-ITO dimers antennas[47]; (d) electric field distribution centered at 1.75, 2.70, and 3.20 eV in the triangular particle spectrum[48].

    图 4  (a) 器件结构示意图[49]; (b) Au@MoS2异质结构中可能的光生载流子生成路径[49]; (c) Au@MoS2光电晶体管上光电流和响应度随入射功率的变化, 以及多层MoS2光电晶体管上光电流和响应度随入射功率的变化[49]; (d) 基于WS2纳米盘/石墨烯范德瓦耳斯异质结构的光电探测器示意图以及WS2纳米盘/石墨烯光电探测器的放大视图, 图中展示了在范德瓦耳斯界面处的电荷转移过程[50]; (e) WS2纳米盘/石墨烯光电探测器(红色)和WS2连续膜/石墨烯光电探测器(黑色)的光谱光响应性[50]; (f) 热电子的生成和转移过程[54]; (g) WSe2/ReS2异质结构的示意图[59]; (h) 水平与垂直偏振下的光学共振现象及其对电子-空穴生成的贡献[59]

    Fig. 4.  (a) Device structure schematic diagram[49]; (b) the possible photocarrier generation paths in the Au@MoS2 heterostructure[49]; (c) the variation of photocurrent and responsivity on the Au@MoS2 phototransistor with incident power, as well as the variation of photocurrent and responsivity on the multilayer MoS2 phototransistor with incident power[49]; (d) schematic diagram of a WS2 nanodisk/graphene van der Waals heterostructure photodetector and an enlarged view of the WS2 nanodisk/graphene photodetector, showing the charge transfer process at the van der Waals interface[50]; (e) spectral light responsivity of the WS2 nanodisk/graphene photodetector (red) and the WS2 continuous film/graphene photodetector (black)[50]; (f) generation and transfer process of hot electrons[54]; (g) schematic diagram of the heterostructure WSe2/ReS2[59]; (h) optical resonance phenomenon under horizontal and vertical polarization and its contribution to electron-hole generation[59].

    图 5  (a) BP光子器件的结构示意图[63]; (b) 1L-MoS2-NCOM示意图[64]; (c) 两种设计的BP等离子体结构[65]; (d) 两种不同偏振(扶手椅型和之字形)下的吸收谱[65]; (e) LSPR和SLR模式在整个单元格中的电场强度|E|2的模拟大小[66]; (f) 基于金属天线改进的远场定向辐射计算方案示意图, 黄色为GNR材料, 蓝色为二硫化钼单层膜[69]

    Fig. 5.  (a) Schematic structure of BP photonic device[63]; (b) schematic diagram of 1L-MoS2-NCOM[64]; (c) two designs of BP plasma structures[65]; (d) absorption spectra under two different polarizations (armchair and zigzag)[65]; (e) simulated size of electric field strength |E|2 in LSPR and SLR modes throughout the entire cell[66]; (f) schematic diagram of far-field directional radiation calculation scheme based on antenna improvement, yellow represents GNR material, blue represents monolayer MoS2 film[69].

    图 6  (a) 平面波入射下混合光栅-石墨烯结构示意图[71]; (b) 纯银光栅、独立石墨烯及覆盖石墨烯的光栅(r = b)的法向吸收光谱对比[71]; (c) 全线性偏振光探测器示意图[72]; (d) 旋转变焦透镜接触的近场分布, 在0°和60°偏振光照射下, 具有光栅结构的接触点的电场分布, 以及没有光栅结构的接触点的电场分布[72]; (e) 通过片上SPP介导的MoTe2基光电探测器[73]; (f) 归一化光电流作为入射偏振方向的函数, 橙色方块表示光栅上的入射, 蓝色圆圈表示MoTe2上的入射[73]; (g) 制备流程示意图[61]; (h) 石墨烯-Au纳米光栅在TE偏振和TM偏振光照射下的模拟吸收光谱[61]; (i) 在1327纳米的波长下, 未偏振光在Au NGs和Gra-Au NGs上的电场分布[61]; (j) 器件光电流对偏振角的依赖性[61]

    Fig. 6.  (a) Schematic diagram of mixed grating-graphene structure under plane wave incidence[71]; (b) comparison of normal absorption spectra for pure silver gratings, independent graphene, and gratings covered with graphene (r = b)[71]; (c) schematic diagram of the fully linear polarization light detector[72]; (d) near-field distribution when the focal plane lens is in contact. The electric field distribution at the contact point with and without grating structure under illumination of 0°and 60°polarized light[72]; (e) MoTe2-based photodetector mediated by on-chip SPP[73]; (f) Normalized photocurrent as a function of the incident polarization direction, the orange squares represent the incidence on the grating, and the blue circles represent the incidence on MoTe2[73]; (g) schematic diagram of the preparation process[61]; (h) simulated absorption spectra of Graphene-Au nanogratings under TE and TM polarization light illumination[61]; (i) electric field distribution of unpolarized light on Au NGs and Gra-Au NGs at a wavelength of 1327 nanometers[61]; (j) dependence of the device photocurrent on the polarization angle[61].

    图 7  (a) 宽带CPL光电探测器的器件结构[76]; (b) 线偏振光和CPL照射下等离子体超表面接触的电场分布[76]; (c) LCP和RCP照射下的光电流方向[76]; (d) 计算得到的波长依赖CPL探测率值, 插图为分别在LCP和RCP光照射下测得的波长扫描光电流[76]; (e) 不同波长的入射光下实验测量的1/4波片角度依赖零偏置光电流[76]; (f) 纳米天线介导半金属光电探测器示意图[77]; (g) 通过坐标变换计算取向角为θ的锥形纳米天线光响应的示意图[77]; (h) 圆偏振光CPL的模拟光响应[77]; (i) 在有限垂直磁场B下, 具有不同手性等离子体场的WSe2中量子电子的腔依赖性偏振光子输出示意图[78]; (j) 等离子体晶格的扫描电子显微镜图像[78]

    Fig. 7.  (a) Device structure of a broadband CPL photodetector[76]; (b) electric field distribution of the plasma super surface under illumination with linearly polarized light and CPL[76]; (c) light current direction under LCP and RCP irradiation[76]; (d) calculated wavelength-dependent CPL detection rate values, the In2Se3 shows the wavelength-scanned photocurrent measured under LCP and RCP light illumination[76]; (e) experimental measurement of quarter waveplate angle-dependent zero bias photocurrent for different wavelengths of incident light[76]; (f) schematic diagram of a nanoscale antenna-mediated semimetal photodetector[77]; (g) schematic diagram for calculating the cone-shaped nanoscale antenna's light response at an orientation angle of θ[77]; (h) simulated light response of CPL[77]; (i) schematic diagram showing the cavity-dependent polarization photon output of quantum electrons in WSe2 with different chiral plasma fields under a finite vertical magnetic field B[78]; (j)scanning electron microscope image of the plasma lattice[78].

    图 8  (a) 偏振信息编码与解码系统示意图[72]; (b) 输入灰度信号、检测到的光电流(IDS, 1和IDS, 2)与偏振角之间对应关系的时间依赖性解码过程[72]; (c) IDS, 1和IDS, 2的实测光电流结果[72]; (d) 图案上重建的偏振角信息: “爱”字形为0°线性偏振; “H”字形为75°线性偏振; “N”字形为90°线性偏振; “U”字形为120°线性偏振[72]; (e) MoSe2等离子体杂化集成非线性路由器的功能示意图[81]; (f) 两种电路的二次谐波光子计数随输入激光功率变化的对数-对数曲线[81]; (g) 基于BP光电探测器的光加密通信原理示意图[82]; (h) BP光电探测器对接收信号的响应特性[82]

    Fig. 8.  (a) Schematic diagram of polarization information encoding and decoding system[72]; (b) time-dependent decoding process of the correspondence between input grayscale signal, detected photocurrent (IDS, 1 and IDS, 2) , and polarization angle[72]; (c) measured photocurrent results of IDS, 1 and IDS, 2[72]; (d) reconstructed polarization angle information on the pattern: ‘Love’ shape is 0°linear polarization; ‘H’ shape is 75°linear polarization; ‘N’ shape is 90°linear polarization; ‘U’ shape is 120°linear polarization[72]; (e) functional schematic diagram of a MoSe2 plasma hybrid integrated nonlinear router[81]; (f) log-log curve of second harmonic photon counting for two circuits with respect to input laser power[81]; (g) schematic diagram of the principle of light encryption communication based on BP photodetector[82]; (h) response characteristics of BP photodetector to received signal[82].

    图 9  (a)—(c) 逻辑与、或及XNOR运算系统示意图, 包含混合光电信号输入, 以及逻辑与、或及XNOR运算的符号化示意图与真值表[88]; (d) 加密/解密光通信系统设计示意图[88]; (e) 加密图像传输演示[88]; (f) 偏振信息编码与解码的实验装置[76]; (g) 随时间变化的解码图像[76]

    Fig. 9.  (a)–(c) Schematic diagrams of logical AND, OR, and XNOR operation systems, including mixed photoelectric signal inputs, as well as symbolic schematic diagrams and truth tables for logical AND, OR, and XNOR operations[88]; (d) schematic diagram of an encrypted/decrypted optical communication system design[88]; (e) demonstration of encrypted image transmission[88]; (f) experimental device for encoding and decoding polarization information[76]; (g) decoded images over time[76].

    图 10  (a)MoS2-银纳米光栅阵列的光电晶体管神经网络架构示意图 [93]; (b)图像的预处理过程[93]; (c)入射波长1064 nm时零偏压下偏振光响应率的极化图谱[93]; (d)石墨烯上的双臂超表面结构实现圆偏振光、左旋圆偏振光和右旋圆偏振光探测矢量分离[95]; (e)双光入射模式下对应的编码光电压输出信号及三波长圆偏振信号提取的示意图[95]; (f)芯片级全斯托克斯偏振仪结构示意图, 插图展示Z形超表面的扫描电镜图[96]; (g)优化光电转换矩阵表示法[96]

    Fig. 10.  (a) Schematic diagram of the MoS2-Ag nanograting array structure a [93]; (b) image preprocessing process[93]; (c) comparison of image recognition rates before and after preprocessing[93]; (d) the dual-arm metasurface structure on graphene can localize light of different wavelengths and handedness on either side of the dual arms, generating vectorial photocurrents[95]; (e) corresponding encoded photovoltage output signal in dual light incidence mode[95]; (f) schematic of the on-chip full-Stokes polarimeter[96]; (g) matrix representation of the OCM[96].

    表 1  不同等离激元结构对范德瓦耳斯探测器偏振探测器件的增强机制、探测器性能指标、偏振性能指标对比

    Table 1.  Comparison of plasmonic structures for enhancing polarization-sensitive van der Waals photodetectors: mechanisms, detector metrics, and polarization metrics.

    等离激元结构二维材料增强机制响应度A/W探测率D*
    Jones
    响应时间偏振比响应光谱范围文献
    各向异性纳米结构BPLSPR802.426.36 ps118.4615—740 nm

    765—865 nm
    [63]
    BPLSPR14.2< 90 μs8.71.55—4 μm[65]
    MoS2/In2Se3SPPs28.59.81
    ×1012
    上升: 195 ns

    下降: 222 ns
    1.88近红外波段[68]
    周期性光栅ReS2/WSe2Mie散射27.33.7 ms12.6405—532 nm[59]
    石墨烯SPPs2.950.28
    ×107
    上升: 39 ms

    下降: 32.1 ms
    6.65635—1550 nm[61]
    In2Se3SPPs0.532.5
    ×1010
    上升: 380 μs

    下降: 300 μs
    -1.1633 nm至
    近红外波段
    [72]
    手性结构In2Se3LSPR0.19上升: 320 μs

    下降: 425 μs
    1.6×104500—1100 nm[76]
    石墨烯LSPR15.6< 667 ns≥ 1中红外波段[77]
    MoS2SPPs约1×10–4上升: 14 μs

    下降: 11 μs
    31200—1600 nm[96]
    下载: 导出CSV
  • [1]

    Sun Y L, Zhang X G, Cui T J, Jiang W X 2025 Adv. Funct. Mater. 35 2421870Google Scholar

    [2]

    Su C, Li M Y, Yan H, Zhang Y, Li H, Fan W H, Bai W J, Liu X J, Wang Q G, Yin S G 2025 ACS Appl. Mater. Interfaces 17 5213

    [3]

    Wang F K, Fang S, Zhang Y, Wang Q J 2025 Nat. Commun. 16 6791Google Scholar

    [4]

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 163201

    [5]

    Li X, Liu K, Wu D, Lin P, Shi Z, Li X, Zeng L, Chai Y, Lau S P, Tsang Y H Adv. Mater. 24 15717

    [6]

    Wu J H, Wei M L, Mu J L, Ma H, Zhong C Y, Ye Y T, Sun C L, Tang B, Wang L C, Li J Y, Xu X M, Liu B L, Li L, Lin H T 2021 ACS Nano 15 15982Google Scholar

    [7]

    Wu J H, Ye Y T, Jian J L, Yao X P, Li J Y, Tang B, Ma H, Wei M L, Li W, Lin H T, Li L 2023 Nano Lett. 23 6440Google Scholar

    [8]

    Chang H, Hur W, Kang H, Jun B H 2025 Light-Sci. Appl. 14 79

    [9]

    Jian J L, Liu R Z, Ye Y T, Wu J H, Deng Q Y, Wei M L, Tang Y H, Tang R J, Sun B S, Ma H, Shi Y L, Zhong C Y, Sun C L, Lin H T, Li M, Li L 2024 Adv. Opt. Mater. 12 2400281

    [10]

    Im H, Bantz K C, Lee S H, Johnson T W, Haynes C L, Oh S H 2013 Adv. Mater. 25 2678Google Scholar

    [11]

    Wei H, Xu H X 2014 Mater. Today 17 372Google Scholar

    [12]

    Lee J J, Han S J, Choi C, Seo C, Hwang S, Kim J, Hong J P, Jang J, Kyhm J, Kim J W, Yu B S, Lim J A, Wang G, Kang J, Kim Y, Ahn S K, Ahn J, Hwang D K 2025 Nat. Commun. 16 4624Google Scholar

    [13]

    Kwon S, Lee S Y, Choi S H, Kang J W, Lee T, Song J, Lee S W, Cho C H, Kim K K, Yee K J, Kim D W 2020 ACS Appl. Mater. Interfaces 12 44088Google Scholar

    [14]

    Alamri M, Liu B, Sadeghi S M, Ewing D, Wilson A, Doolin J L, Berrie C L, Wu J 2020 ACS Appl. Nano Mater. 3 7858

    [15]

    Jian J L, Wu J, Zhong C, Ma H, Sun B, Ye Y, Luo Y, Wei M, Lei K, Liu R, Chen Z, Li G, Dai H, Tang R, Sun C, Li J, Li W, Li M, Lin H, Li L 2023 ACS Photonics 10 3494Google Scholar

    [16]

    Bai Q H, Huang X, Guo Y, Du S, Sun C, Hu L Y, Zheng R X, Yang Y, Jin A Z, Li J J, Gu C Z 2023 Nano Res. 16 10272Google Scholar

    [17]

    Zhong C Y, Liao K, Dai T X, Wei M L, Ma H, Wu J H, Zhang Z B, Ye Y T, Luo Y T, Chen Z Q, Jian J L, Sun C L, Tang B, Zhang P, Liu R N, Li J Y, Yang J Y, Li L, Liu K H, Hu X Y, Lin H T 2023 Nat. Commun. 14 6939Google Scholar

    [18]

    Drude P 1900 Ann. Phys. 306 566Google Scholar

    [19]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282

    [20]

    Tong J C, Suo F, Ma J H, Tobing L Y M, Qian L, Zhang D H 2019 Opto-Electron. Adv. 2 180026

    [21]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131

    [22]

    Grundmann M (Grundmann M ed) 2021 The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (Cham: Springer International Publishing) pp339–350

    [23]

    Maier S A (Maier S A ed) 2007 Plasmonics: Fundamentals and Applications (New York, NY: Springer US) pp65–88

    [24]

    何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤 2021 红外与激光工程 50 120

    He W D, Su D, Wang S J, Zhou H L, Chen W, Zhang X Y, Zhao N, Zhang T 2021 Infrared and Laser Eng. 50 120

    [25]

    王菁, 焦韩雪, 陈艳, 伍帅琴, 王旭东, 张书魁, 褚君浩, 王建禄 2024 光子学报 53 3

    Wang J, Jiao H X, Chen Y, Wu S Q, Wang X D, Zhang S K, Chu H J, Wang JL 2024 Acta Photonica Sin. 53 3

    [26]

    Seied Ali Safiabadi T, Zhou W 2019 Nanophotonics 8 1199

    [27]

    Kasani S, Curtin K, Wu N 2019 Nanophotonics 8 2065Google Scholar

    [28]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [29]

    Zhang X N, Nie C B, Jiang X L, Zhu L, Wei X Z 2025 Adv. Opt. Mater. 13 2402794

    [30]

    Su J T, Hou X Q, Dai N, Li Y 2024 Front. Phys. 19 63501Google Scholar

    [31]

    Amendola V, Pilot R, Frasconi M, Marago O M, Iati M A 2017 J. Phys. Condes. Matter 29 203002Google Scholar

    [32]

    Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y 2011 Chem. Rev. 111 3669Google Scholar

    [33]

    Mie G 1908 Ann. Phys. 330 377

    [34]

    Dorodnyy A, Smajic J, Leuthold J 2023 Laser Photon. Rev. 17 1

    [35]

    Ge L X, Han D Z, Zi J 2015 Opt. Commun. 354 225Google Scholar

    [36]

    Kinsey N, Ferrera M, Shalaev V M, Boltasseva A 2015 J. Opt. Soc. Am. B 32 121

    [37]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496

    [38]

    Dai D X, He S L 2009 Opt. Express 17 16646Google Scholar

    [39]

    Zhu B Q, Tsang H K 2016 J. Lightwave Technol. 34 2467Google Scholar

    [40]

    Dai D X, He S L 2010 Opt. Express 18 17958Google Scholar

    [41]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8

    [42]

    Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J 2019 ACS Photonics 6 154Google Scholar

    [43]

    Ma Z Z, Kikunaga K, Wang H, Sun S, Amin R, Maiti R, Tahersima M H, Dalir H, Miscuglio M, Sorger V J 2020 ACS Photonics 7 932

    [44]

    Ding Y H, Cheng Z, Zhu X L, Yvind K, Dong J J, Galili M, Hu H, Mortensen N A, Xiao S H, Oxenløwe L K 2020 Nanophotonics 9 317Google Scholar

    [45]

    Craciun A-M, Stoia D, Azziz A, Astilean S, Focsan M, Lamy de la Chapelle M 2025 RSC Adv. 15 20848

    [46]

    Alsawafta M 2025 Plasmonics 1 1

    [47]

    Abb M, Wang Y, Papasimakis N, de Groot C H, Muskens O L 2014 Nano Lett. 14 346Google Scholar

    [48]

    Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M, Colliex C 2007 Nat. Phys. 3 348

    [49]

    Li Y, DiStefano J G, Murthy A A, Cain J D, Hanson E D, Li Q, Castro F C, Chen X, Dravid V P 2017 ACS Nano 11 10321Google Scholar

    [50]

    Alamri M, Gong M, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390Google Scholar

    [51]

    Khurgin J, Bykov A Y, Zayats A V 2024 eLight 4 15

    [52]

    Wang W H, Besteiro L V, Yu P, Lin F, Govorov A O, Xu H X, Wang Z M 2021 Nanophotonics 10 1911

    [53]

    Lei D Y, Su D, Maier S A 2024 Light-Sci. Appl. 13 243

    [54]

    Xu X H, Dutta A, Khurgin J, Wei A, Shalaev V M, Boltasseva A 2020 Laser Photon. Rev. 14 1900376Google Scholar

    [55]

    Yang W X, Liu Y W, Cullen D A, McBride J R, Lian T Q 2021 Nano Lett. 21 4036Google Scholar

    [56]

    Liu Z L, Liu M X, Qi L J, Zhang N, Wang B, Sun X J, Zhang R J, Li D B, Li S J 2025 Light-Sci. Appl. 14 68Google Scholar

    [57]

    Yuan F Y, Ye Z, Fan Z, Lin B, Hui L, Jun P L, Zhen H N 2022 Chin. Phys. Lett. 39 058501Google Scholar

    [58]

    Chen S, Cao R, Chen X, Wu Q, Zeng Y H, Gao S, Guo Z N, Zhao J L, Zhang M, Zhang H 2020 Adv. Mater. Interfaces 7 1902179Google Scholar

    [59]

    Yan J H, Yang X Z, Liu X Y, Du C, Qin F, Yang M M, Zheng Z Q, Li J B 2023 Adv. Sci. 10 2207022Google Scholar

    [60]

    Randerson S A, Zotev P G, Hu X, Knight A J, Wang Y, Nagarkar S, Hensman D, Wang Y, Tartakovskii A I 2024 ACS Nano 18 16208Google Scholar

    [61]

    Fan C R, Sun X J, Shi Z M, Lü B C, Chen Y, Li S J, Liu J M 2023 Adv. Opt. Mater. 11 2202860Google Scholar

    [62]

    Rizvi M H, Wang R, Schubert J, Crumpler W D, Rossner C, Oldenburg A L, Fery A, Tracy J B 2022 Adv. Mater. 34 2203366Google Scholar

    [63]

    Hao Y N, Hang T Y, Chen C H, Zhang C Z, Chen Y J, Yu C C, Wu S L, Yang J, Yang Z H, Li X F, Cao G Y 2024 Adv. Funct. Mater. 35 2416475

    [64]

    Lu Z Y, Ji J M, Ye H M, Zhang H, Zhang S P, Xu H X 2024 Nat. Commun. 15 8803Google Scholar

    [65]

    Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861Google Scholar

    [66]

    Li H Y, Zhao J Y, Wang Y Z, Liu H T, Chen Q Y, Bao Y L, Zhou M E, Li Y, Sang Y T, Yang F, Nie Z H 2025 ACS Nano 19 7391Google Scholar

    [67]

    程佳宝, 唐大秀, 谢颖, 顾辰杰, 刘自军, 芦鹏飞, 沈祥 2024 激光技术 48 867

    Chen J B, Tang D X, Xie Y, Gu C J, Liu Z J, Lu P F, Shen X 2024 Laser Technol. 48 867

    [68]

    Chu Y T, Chen P L, Huang S H, Yadav S N S, Syong W R, Mao C H, Lu Y J, Liu C H, Wu P C, Yen T J 2025 ACS Nano 19 18545Google Scholar

    [69]

    Wen T, Zhang W D, Liu S, Hu A Q, Zhao J Y, Ye Y, Chen Y, Qiu C W, Gong Q H, Lu G W 2020 Sci. Adv. 6 eaao0019

    [70]

    Ray S K, Chandel S, Singh A K, Kumar A, Mandal A, Misra S, Mitra P, Ghosh N 2017 ACS Nano 11 1641Google Scholar

    [71]

    Zhao B, Zhang Z M 2015 ACS Photonics 2 1611Google Scholar

    [72]

    Wang C H, He C L, Liu L, Tang Z L, Wang Y F, Wang H L, Liu W Q, Wang X, Wang X X, Pan A L 2025 Nano Lett. 25 5794Google Scholar

    [73]

    Li R Z, Zhang X L, Zhong F, Yu Y F, Yan P D, Lei D Y, Lu J P, Ni Z H 2025 Adv. Opt. Mater. 13 2402668Google Scholar

    [74]

    Huang T Y, Tu X C, Shen C Q, Zheng B J, Wang J Z, Wang H, Khaliji K, Park S H, Liu Z Y, Yang T, Zhang Z D, Shao L, Li X S, Low T, Shi Y, Wang X M 2022 Nature 605 63Google Scholar

    [75]

    Zhu Y, Zou K L, Qi D X, He J, Peng R W, Wang M 2025 Nano Lett. 25 8680YGoogle Scholar

    [76]

    He C L, Tang Z L, Wang C H, Wang Y F, Hua Q Z, Liu L, Wang X, Schmidt O G, Maier S A, Ren H R, Wang X X, Pan A L 2025 Adv. Mater. 37 2418405Google Scholar

    [77]

    Wei J X, Xu C, Dong B W, Qiu C W, Lee C K 2021 Nat. Photonics 15 614Google Scholar

    [78]

    Yang L L, Yuan Y, Fu B W, Yang J N, Dai D J, Shi S S, Yan S, Zhu R, Han X, Li H C, Zuo Z C, Wang C, Huang Y, Jin K J, Gong Q H, Xu X L 2023 Nat. Commun. 14 4265Google Scholar

    [79]

    Gan W, Liu Y C, Liu X, Xiao R C, Ni K P, Jiang M, Han H, Zhou X Y, Li S J, Wu C Q, Li Y, Li H 2024 ACS Appl. Mater. Interfaces 16 24943Google Scholar

    [80]

    Guo J X, Lin L, Li S D, Chen J B, Wang S C, Wu W J, Cai J, Liu Y, Ye J H, Huang W 2022 ACS Appl. Nano Mater. 5 587Google Scholar

    [81]

    Wu P Y, Lee W Q, Liu C H, Huang C B 2024 Nat. Commun. 15 1855Google Scholar

    [82]

    Hao Y N, Hang T Y, Chen C H, Zhang C Z, Chen Y J, Yu C C, Wu S L, Yang J, Yang Z H, Li X F, Cao G Y 2025 Adv. Funct. Mater. 35 2416475Google Scholar

    [83]

    Guo T, Li S S, Zhou Y N, Lu W D, Yan Y, Wu Y A 2024 Nat. Commun. 15 6731Google Scholar

    [84]

    Chen Y Z, Zheng X Y, Zhang X Y, Pan W K, Wang Z, Li S H, Dong S H, Liu F F, He Q, Zhou L, Sun S L 2023 Nano Lett. 23 3326Google Scholar

    [85]

    Liu Y X, Wang J J, Zhu B B, Wang X H, Zhang S, Liu W F, Shi L, Tao Z S 2025 Nano Lett. 25 2864Google Scholar

    [86]

    Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490Google Scholar

    [87]

    Pelgrin V, Yoon H H, Cassan E, Sun Z 2023 Light Adv. Manuf. 4 311

    [88]

    Hou S C, Han L, Zhang S, Zhang L B, Zhang K X, Xiao K N, Yang Y, Zhang Y D, Wen Y F, Mo W Q, Tan Y R, Yao Y F, He J L, Tang W W, Guo X G, Zhu Y M, Chen X S 2025 Adv. Sci. 12 2415518Google Scholar

    [89]

    Brown E, Brunker J, Bohndiek S E 2019 Dis. Model. Mech. 12 039636

    [90]

    Jia Q L, Zhang Z D 2024 Int. J. Remote Sens. 45 5224Google Scholar

    [91]

    Che M Q, Wang B, Zhao X Y, Li Y H, Chang C L, Liu M X, Du Y, Qi L J, Zhang N, Zou Y T, Li S J 2024 ACS Nano 18 30884Google Scholar

    [92]

    Wu C H, Ku C J, Yu M W, Yang J H, Wu P Y, Huang C B, Lu T C, Huang J S, Ishii S, Chen K P 2023 Adv. Sci. 10 1

    [93]

    Zhang T, Guo X, Wang P, Fan X Y, Wang Z C, Tong Y, Wang D C, Tong L M, Li L J 2024 Nat. Commun. 15 2471Google Scholar

    [94]

    Bai Q H, Huang X, Du S, Guo Y, Li C S, Li W, Li J J, Gu C Z 2024 Nanoscale 16 8907Google Scholar

    [95]

    Jiang H, Chen Y Z, Guo W Y, Zhang Y, Zhou R G, Gu M L, Zhong F, Ni Z H, Lu J P, Qiu C W, Gao W B 2024 Nat. Commun. 15 8347Google Scholar

    [96]

    Deng J, Shi M D, Liu X S, Zhou J, Qin X Y, Wang R W, Zhen Y R, Dai X, Chen Y Z, Wei J X, Ni Z H, Gao W B, Qiu C W, Chen X S 2024 Nat. Electron. 7 1004Google Scholar

    [97]

    Maier S A (Maier S A ed) 2007 Plasmonics: Fundamentals and Applications (New York, NY: Springer US) pp21-37

    [98]

    Gogotsi Y, Anasori B 2019 ACS Nano 13 8491Google Scholar

    [99]

    Song Q H, Odeh M, Zúñiga-Pérez J, Kanté B, Genevet P 2021 Science 373 1133Google Scholar

    [100]

    Yang Y S, Liu S C, Wang X, Li Z B, Zhang Y, Zhang G M, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411Google Scholar

    [101]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [102]

    Gan W, Ming L, Zhang C T, Peng G H, Cao Z Y, Chen Z, Li Y, Wu C Q, Liu X, Song L 2025 ACS Appl. Mater. Interfaces 17 34086Google Scholar

    [103]

    Li H Y, Xiang Z Y, Wang T L, Naik M H, Kim W, Nie J H, Li S Y, Ge Z H, He Z H, Ou Y B, Banerjee R, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Zaletel M P, Crommie M F, Wang F 2024 Nature 631 765Google Scholar

    [104]

    Wan H, Yu S T, Lei Y, Zhao Q, Tao G Y, Luan S Y, Gui C Q, Zhou S J 2021 Appl. Opt. 60 2783Google Scholar

    [105]

    Yu D J, Cao F, Liao J F, Wang B Z, Su C L, Xing G C 2022 Nat. Commun. 13 6229Google Scholar

    [106]

    Wang Z J, Wan T, Ma S, Chai Y 2024 Nat. Nanotechnol. 19 919Google Scholar

    [107]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [108]

    Yan Y J, Yan T, Wang F, Zhu Y H, Li S H, Cai Y C, Zhang F Y, Wang Y R, Liu X L, Xu K, He J, Zhan X Y, Lin J, Wang Z X 2025 Nano Lett. 25 6125Google Scholar

  • [1] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦耳斯材料的原位应变工程与应用. 物理学报, doi: 10.7498/aps.73.20240353
    [2] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, doi: 10.7498/aps.73.20241106
    [3] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, doi: 10.7498/aps.73.20240668
    [4] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [5] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, doi: 10.7498/aps.70.20210693
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [7] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, doi: 10.7498/aps.68.20190331
    [8] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [9] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, doi: 10.7498/aps.68.20191098
    [10] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, doi: 10.7498/aps.66.247701
    [11] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, doi: 10.7498/aps.66.227301
    [12] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, doi: 10.7498/aps.65.087301
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, doi: 10.7498/aps.65.236801
    [14] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.63.203201
    [15] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, doi: 10.7498/aps.63.127303
    [16] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, doi: 10.7498/aps.62.237303
    [17] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, doi: 10.7498/aps.62.177301
    [18] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, doi: 10.7498/aps.62.037805
    [19] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, doi: 10.7498/aps.61.097805
    [20] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, doi: 10.7498/aps.60.046102
计量
  • 文章访问数:  340
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 修回日期:  2025-09-24
  • 上网日期:  2025-09-30

/

返回文章
返回