搜索

x
专题

更多 
领域
文章类型

《物理学报》创刊90周年

   《物理学报》创刊于 1933年 10月, 是中国物理学会成立之后第二年即主持编辑出版的我国第一本物理学期刊, 至今已走过90年历程. 期间历经抗日战争等历史时期, 也曾数度停刊(1937年6月—1938年, 1940年 7月—1944年 6月, 1952年, 1966年 6月—1973年), 最近一次复刊是 1974年, 此后一直发展至今. 《物理学报》从一个侧面反映了我国物理学发展的进程和态势, 是广大物理学工作者传播和交流物理学研究成果及知识的重要平台, 在现今复杂多变的国际形势下, 在各种学术刊物蓬勃发展之际, 《物理学报》作为母语期刊在促进国内学术交流与学科发展, 以及人才培育方面仍然发挥着不可替代的作用.

     为庆祝《物理学报》创刊 90周年, 编委会和编辑部开设“《物理学报》创刊 90周年”特别专栏, 回顾学报的发展历程, 讨论当前物理学各领域的进展及未来研究方向. 专栏由主编高鸿钧和副主编范桁担任客座编辑, 邀请老一辈物理学家及在物理学相关领域做出重要研究工作的学者撰稿, 既有纪念性文章, 也有观点文章和综述文章.

     专栏获得了受邀专家的积极响应, 邀约到国内若干具有代表性的专家和科研团队撰稿. 专栏文章将按来稿时间陆续刊出, 敬请读者持续关注. 本期将出版第一部分 24篇文章, 其中 3篇为纪念性文章, 21篇学术类文章. 这 3篇纪念性文章, 分别来自《物理学报》的老主编王乃彦先生, 老编委吴咏时教授, 以及作者代表于渌先生. 王乃彦先生和吴咏时教授从编委的角度, 回忆了《物理学报》发展历程中一些重要的事件和体会. 于渌先生以作者的身份, 讲述了他的学术生涯与《物理学报》的结缘. 学术类文章主要有观点和综述文章, 内容涵盖量子、表面、材料、计算、物态、天文、统计、磁性等多个研究方向, 涉及力、热、声、光、电、磁等多种技术手段, 也包含了微观、介观, 到月球和宇宙多空间尺度, 体现了物理学丰富的研究对象和内容.

      观点和综述类文章都出自国内在相关领域研究领先的专家或课题组, 深入讨论重要研究方向的热点问题, 观点深刻, 写作深入浅出, 既适合浏览也适合仔细研读, 文章都具有很高的学术价值, 有的堪称经典, 相信会对读者有所帮助.

       90年来, 《物理学报》承载着我国物理学工作者的厚爱与期待, 也承载着学者与编者办好本土期刊的情怀. 在此, 衷心感谢各位作者、审稿专家、读者和广大物理学工作者长期以来对《物理学报》的关心和支持! 相信随着我国物理学科研和教育的不断发展, 《物理学报》会越来越好, 为我国物理学事业做出更大的贡献!

客座编辑:高鸿钧, 范桁 中国科学院物理研究所
物理学报. 2023, 72(23).
宁拙毋巧,守正创新
高鸿钧
2023, 72 (23): 10.749. doi: 10.7498/aps.72.2023
摘要 +
我和《物理学报》
于渌
2023, 72 (23): 230104. doi: 10.7498/aps.72.20231739
摘要 +
我的物理生涯和《物理学报》紧密相连, 在关键节点得到她的有力支持, 心存感激. 其中, 开启独立研究的“习作”, 60年后仍被前沿研究广泛引用; “文化大革命”期间幸存的独立前沿计算, 为改革开放后的国际学术交流打开了局面.
关于《物理学报》1974年复刊的一些回忆
吴咏时
2023, 72 (23): 230103. doi: 10.7498/aps.72.20231851
摘要 +
1974年1月, 《物理学报》在被迫停刊7年半后成功复刊. 本文是关于《物理学报》历史上的这件大事的一些回忆. 记述当年复刊前后的一些背景故事, 以及老一代物理学家的艰辛及热忱的努力.
介观统计热力学理论与实验
全海涛, 董辉, 孙昌璞
2023, 72 (23): 230501. doi: 10.7498/aps.72.20231608
摘要 +
对于只有有限自由度的介观小系统, 传统的热力学定律是否成立? 温度、熵、做功、传热、等温过程、Carnot循环这些概念还是否有效? 是否需要对原来适用于宏观系统的传统热力学理论进行修改或扩充、以适用于这样的小系统? 在过去近20年里, 我们深入研究了在介观小系统和量子系统中热力学基本概念的推广(例如什么是量子等温过程)以及基本热力学定律的适用性问题. 研究表明, 在系综平均意义上热力学定律仍然适用于小系统; 考虑了Maxwell妖的信息擦除功耗后, 热力学第二定律不会被违反; “小系统”的统计热力学具有一些新的特性, 由于系统和环境之间的耦合不可忽略, 有限系统的平衡态分布偏离正则系综, 这可以描述诸如黑洞等小系统的辐射关联及其信息丢失现象; 在任意远离平衡的情况下, 热力学量的涨落变得十分显著, 并且热力学量的分布函数满足一些严格成立的恒等式. 这些恒等式定义了所谓的涨落定理, 由此通过测量非平衡过程的物理量(如功分布)可以获得平衡过程的物理量相对值(如自由能差等). 此外, 尽管量子属性和信息论的考虑为统计热力学带来一些有别于经典和传统的特性, 有助于理解Gibbs佯谬和Maxwell妖等基本问题, 但需要指出的是, 量子热机和信息辅助热机的效率并没有超越经典热机. 随着在小系统中引入运动方程, 热力学和力学之间的联系变得更加紧密, 能够从第一性原理出发研究非平衡过程的能量耗散和热机的功率、效率优化及其最优调控微分几何化等问题. 在对具体热循环过程熵产生问题的研究中, 对得到的功率-效率约束关系进行了系统性的实验检验.
芳香超导体: 电-声耦合与电子关联
钟国华, 林海青
2023, 72 (23): 237403. doi: 10.7498/aps.72.20231751
摘要 +
芳香超导体是近年来发现的一类新型高温超导体, 超导转变温度随芳香分子尺寸的增大而升高, 这引起了的实验和理论研究的广泛关注. 关于其超导特性的驱动机制是电-声耦合还是电子关联效应等相关问题吸引了国内外研究组的极大兴趣. 本文简述了芳香超导体的研究进展, 介绍了金属掺杂芳香化合物后展现出的丰富超导现象, 从电-声耦合和电子关联角度, 讨论了国内外研究组对芳香化合物超导性的理解, 及其对探索具有更高转变温度的芳香高温超导体的意义, 最后介绍了目前领域内面临的挑战.
低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题
罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文
2023, 72 (23): 234401. doi: 10.7498/aps.72.20231546
摘要 +
半导体芯片发展路线图上的一个障碍是“热死(heat death)”, 也就是大量热量的产生而导致芯片被烧毁. 所以散热问题成为进一步发展半导体工业亟待解决的关键问题. 芯片里的热传导包含一维和二维材料中声子热传导以及声子通过不同材料间的界面热传导. 本文总结了过去30年来一维、二维和界面声子热传导的主要理论和实验进展, 重点介绍了一维体系声子热传导发散的物理机制以及反常热传导和反常扩散之间的关系. 本文还简要讨论了与此相关的非平衡态统计物理的基本问题: 从给定的哈密顿量出发是否能够推导出宏观输运行为. 本文从微观图像的角度讨论了调控声子热传导的几种方法: 纳米声子晶体, 纳米热超材料, 界面和声子凝聚等. 为了让读者全面了解声子热传导, 还简要地介绍了其他声子热输运现象, 包括热导量子化、声子热霍尔效应、手性声子, 以及声子与其他载流子之间的相互作用. 最后, 本文讨论了声子热传导研究面临的挑战和机遇, 包括声子在量子信息和技术中的潜在应用.
抵御大变形超导体的发现
郭静, 吴奇, 孙力玲
2023, 72 (23): 237401. doi: 10.7498/aps.72.20231341
摘要 +
超导体在压力的作用下会产生原子间距的缩小, 进而导致晶格参数的改变, 甚至能使其原子排列规律变化, 引发结构相变. 超导体的超导电性是一种演生现象, 是由超导体中所包含的电荷、自旋、轨道、晶格等多种相互作用的自由度所决定的. 因此, 当超导体在外部压力作用下发生晶体结构的变化, 通常都会引起超导电性的改变, 尤其超导转变温度的变化. 本文介绍近年发现的一类能够抵御大变形的超导体(robust superconductivity against volume shrinkage, RSAVS)——这类超导体在压力作用下, 即使发生很大的体积压缩, 其超导转变温度仍保持不变. 这种奇异的能抵御压缩变形的稳定超导电性最初是在对高熵合金的高压研究中观察到的, 后续研究发现在广泛应用的商业化NbTi合金以及Nb, Ta等金属元素超导体中也具有这种可抵御大变形的超导电性. 分析结果显示, 这类超导体都具有体心立方晶体结构, 并由过渡族金属元素构成. 这种超导体的发现为统一理解“什么因素决定了超导体的超导转变温度? ”这一关键问题提出了新的研究课题和挑战.
铌酸锂集成光子器件的发展与机遇
熊霄, 曹启韬, 肖云峰
2023, 72 (23): 234201. doi: 10.7498/aps.72.20231295
摘要 +
铌酸锂, 作为应用最广泛的非线性光学晶体之一, 近十年来由于薄膜铌酸锂晶圆的出现而再次获得了学术界与产业界的关注. 基于薄膜铌酸锂的集成光电子器件的优越性能已在诸多应用中得到演示, 例如光信息处理、激光雷达、光学频率梳、微波光子学和量子光学等. 2020年, 薄膜铌酸锂器件通过光刻技术在6 in (1 in=2.54 cm)晶圆上的成功制备, 推动了铌酸锂加工从实验室逐步走向工业化. 薄膜铌酸锂光子器件的研究主要聚焦于利用电光、声光和二阶/三阶非线性效应进行光调制或频率转换; 最近三年, 掺杂稀土离子还成功赋予铌酸锂增益特性, 实现了片上铌酸锂放大器和激光器. 本文将简略回顾薄膜铌酸锂的发展过程, 着眼于集成光子器件, 介绍国内外研究组取得的进展、意义以及面临的挑战.
转角铜氧化物中的约瑟夫森效应
张定, 朱玉莹, 汪恒, 薛其坤
2023, 72 (23): 237402. doi: 10.7498/aps.72.20231815
摘要 +
当前常压下超导转变温度最高的材料仍然来自铜氧化物家族. 然而, 铜氧化物超导的微观机理仍未被完全建立起来, 成为了凝聚态物理领域最具挑战性的问题之一. 测定配对波函数的相位部分是全面理解高温超导机理不可或缺的一环. 该实验往往需要将不同晶向的铜氧化物拼接成高质量的约瑟夫森结, 十分考验样品的合成制备技术. 近年来, 利用二维材料中发展起来的范德瓦耳斯堆垛技术, 研究者们构建了具有原子级平整界面的转角铜氧化物双晶结, 研究了不同掺杂浓度、不同转角下的约瑟夫森隧穿, 探索了其中出现s波、d波、以及由于界面耦合演生出的d + id波配对的可能性. 本文将回顾转角铜氧化物约瑟夫森结的研究进展, 介绍近年来发展起来的转角结制备技术, 讨论当前实验测量的结果及其意义, 提出尚待解决的关键性问题.
离子阱量子计算规模化的研究进展
吴宇恺, 段路明
2023, 72 (23): 230302. doi: 10.7498/aps.72.20231128
摘要 +
离子阱系统是当前实现量子计算最为领先的物理系统之一, 已经在数十量子比特的规模下实现了保真度达到容错量子计算阈值的量子态制备、测量、通用量子逻辑门等基本量子操作. 未来离子阱量子计算的一个重要研究方向, 是在保持量子比特高性能的同时, 进一步扩展量子比特的数量, 最终达到解决实际问题所需的规模. 本文介绍当前离子阱量子计算研究中主流的规模化方案, 如离子输运方案和离子-光子量子网络方案等, 以及各方案中存在的限制因素, 进而探讨如二维离子阵列、双重量子比特等新的规模化方案及其前景.
微腔光梳的产生、发展及应用
金星, 肖莘宇, 龚旗煌, 杨起帆
2023, 72 (23): 234203. doi: 10.7498/aps.72.20231816
摘要 +
光频梳提供了光波和微波相干链接的桥梁, 它的诞生革命性地提高了人们对于光学频率和时间的测量精度, 深刻影响着当今世界科技的发展. 最早的光频梳产生于锁模激光器系统, 然而基于锁模激光器的光梳, 因其系统复杂、体积庞大和价格高昂, 一般仅限于实验室应用. 近年来一种新型光频梳应运而生, 并有望解决上述问题. 它是通过连续激光耦合进入高品质光学微腔而激发的, 在频域上通过四波混频产生等间距的频率分量, 在时域上则利用非线性效应平衡微腔色散而形成锁模, 这种新型光频梳被称为“微腔光梳”. 相比于传统光梳, 微腔光梳有着尺寸小、可集成、功耗低和重频范围大等优势, 它的出现标志着产生光梳迈向芯片级尺寸的时代, 并引起了科学界和工业界越来越多的关注. 本文首先概述了微腔光梳的产生与发展历程, 随后介绍微腔光梳在实际应用方面取得的进展, 最后对微腔光梳当前的问题进行总结, 并对未来发展进行展望.
范德瓦耳斯体系中的量子层电子学
肖聪, 姚望
2023, 72 (23): 237302. doi: 10.7498/aps.72.20231323
摘要 +
范德瓦耳斯体系中层间耦合的存在使电子波函数扩展分布在各层上, 使得空间离散的层自由度成为量子力学自由度. 层自由度与电子质心自由度的耦合塑造了动量空间中非平庸的层赝自旋结构, 导致丰富的量子几何性质. 这些性质为晶格失配的范德瓦耳斯体系所独有, 引起各种新颖的输运和光学效应, 线性和非线性响应, 并为多种器件应用提供新思路, 成为量子层电子学研究的前沿课题. 本文简要评述了这一范德瓦耳斯材料体系中的新兴研究方向, 并结合量子层电子学与非线性电子学、转角电子学、手征电子学等新领域的交叉, 对未来一段时间的发展进行展望.
相变调控、磁热效应和反常热膨胀
林源, 胡凤霞, 沈保根
2023, 72 (23): 237501. doi: 10.7498/aps.72.20231118
摘要 +
相变作为广泛存在于自然界中的一种现象很早就受到了广泛的关注, 并且已经被应用于相变制冷、相变存储、相变储能和负热膨胀等领域中. 基于磁热、电热和机械热效应不断发展起来的固态制冷技术具有环保、高效、低噪声和易小型化等优点, 被视为替代汽压缩制冷的新型制冷技术. 其中, 磁热效应是研究历史最悠久的一种. 然而, 单磁场驱动磁热效应的诸多不足限制了其固态制冷应用, 如热效应幅度不够高、滞后损耗大、制冷温跨窄等, 因此多场调控和多卡效应应运而生. 本文主要介绍笔者团队近期开展的多场调控磁热效应、以及磁热材料的反常热膨胀行为的研究.
莫特物理——量子材料的主旋律之一
封东来
2023, 72 (23): 237101. doi: 10.7498/aps.72.20231508
摘要 +
关联量子材料中电子的巡游性与局域化两种行为的竞争与合作, 即莫特物理, 是许多量子材料体系多样物态背后的主要物理机制. 本文回顾了莫特物理在多种量子材料体系中的体现, 论述了其作为量子材料的主旋律之一的各种表现. 因此寻找和理解其千变万化的演生方式, 是实验凝聚态物理研究的中心任务之一.
基于冷原子的非平衡量子多体物理研究
翟荟
2023, 72 (23): 230701. doi: 10.7498/aps.72.20231375
摘要 +
量子多体物理和非平衡物理相结合, 是当前物理学研究的重要机遇和挑战. 非平衡量子多体物理不仅是当前物理学多个分支共同感兴趣的问题, 而且是发展新兴量子科技不可或缺的理论基础. 冷原子体系为研究非平衡量子多体物理提供了理想的平台. 冷原子等人工量子体系的优势, 体现在研究孤立系统热化、和环境耦合导致的耗散、系统参数的扫描、跳变和周期驱动等多种非平衡动力学过程. 本文结合笔者的研究成果, 给出3个具体的例子, 展示基于冷原子的非平衡量子多体物理的研究, 如何突破拓扑物理研究的已有框架, 发展新的测量量子多体关联的方法, 以及丰富规范理论研究的内涵. 这类研究聚焦量子多体系统的拓扑、关联等基本性质, 利用冷原子体系的优势以实现理论和实验的定量结合, 以期提炼出具有普适性的物理规律, 并推广到凝聚态物质、核物质等其他物理系统的非平衡过程.
中国的表面物理
管丹丹, 贾金锋
2023, 72 (23): 236801. doi: 10.7498/aps.72.20231858
摘要 +
以中国科学院表面物理国家重点实验室为主线, 回顾了表面物理在中国的发展历程, 致敬为中国表面物理做出贡献的老一辈科学家. 通过回顾历史可以看出, 中国表面物理蓬勃发展, 不仅做出了很多国际先进水平的工作, 也培养了大批青年人才, 他们已经成为国际凝聚态物理研究的重要力量.
量子材料的弗洛凯调控
鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云
2023, 72 (23): 234202. doi: 10.7498/aps.72.20231423
摘要 +
基于光-物质强相互作用的弗洛凯调控有望在超快时间尺度上驱动量子材料进入非平衡态, 进而调控它们的电子结构和物理特性, 实现平衡态所不具有的新奇物理效应. 近年来, 弗洛凯调控备受研究人员关注, 理论方面已有大量丰富的预言; 实验方面, 拓扑绝缘体、石墨烯、黑磷等几个代表性材料的弗洛凯调控也取得了一些重要的研究进展. 本文简略介绍该领域取得的理论和实验方面的重要进展, 并对研究前景、实验挑战及发展方向进行展望.
二维材料体光伏效应研究进展
陈晓娟, 徐康, 张秀, 刘海云, 熊启华
2023, 72 (23): 237201. doi: 10.7498/aps.72.20231786
摘要 +
体光伏效应是一种二阶非线性光电响应, 指非中心对称结构材料在均匀光辐照下产生稳态的光电流. 体光伏效应由于开路电压不受半导体能隙限制, 并且功率转换效率可以突破Shockley-Queisser极限, 因此引发广泛关注. 此外, 体光伏效应与固体的量子几何性质(如Berry曲率和量子度规)密切相关, 是一种研究晶体电极化、轨道磁化和量子霍尔效应的有效手段. 二维材料具有丰富的电、光、磁、拓扑性质及相互作用机制, 可有效提高体光伏器件性能(如拓展体光伏效应响应范围等), 对探索基础物理问题亦具有重要的研究价值. 本文概述了体光伏效应的发展历程及其几种物理机制, 重点讨论了二维材料中体光伏效应取得的研究进展, 包括单一成分二维材料、二维材料堆垛工程(如二维材料同质结和异质结), 以及在此基础上通过外界作用(如磁场、应变工程)实现产生或调控体光伏效应响应. 最后对二维体光伏效应的发展前景进行了展望.
二维莫尔超晶格中的非线性霍尔效应
吴泽飞, 黄美珍, 王宁
2023, 72 (23): 237301. doi: 10.7498/aps.72.20231324
摘要 +
1879年发现的霍尔效应是凝聚态物理学中最古老也是最重要的领域之一. 最近发现的非线性霍尔效应是霍尔效应家族的新成员. 与大部分需要打破时间反演对称的霍尔效应不同, 非线性霍尔效应存在于少数空间反演破缺但仍具有时间反演对称的系统中, 并且因其高频特性和不需额外施加磁场而在诸多领域具有令人期待的应用前景. 然而, 除空间反演破缺以外, 非线性霍尔效应对材料对称性的要求十分苛刻, 只在极少数材料中观测到了由贝里曲率偶极矩产生的非线性霍尔效应. 近年来快速发展的范德瓦耳斯堆叠技术为剪裁和调控晶体的对称性, 制备具有特殊物理性质的人工二维莫尔晶体提供了一个崭新的途径. 本文主要围绕二维莫尔超晶格结构在实现非线性霍尔效应方面的特性, 介绍了近年来理论和实验上石墨烯超晶格以及过渡金属硫族化合物超晶格中非线性霍尔效应的研究进展, 并展望了未来基于二维莫尔超晶格材料的非线性霍尔效应的研究方向和应用前景.
哈勃常数危机
蔡荣根, 李理, 王少江
2023, 72 (23): 239801. doi: 10.7498/aps.72.20231270
摘要 +
哈勃常数定量刻画了当前宇宙的膨胀速率, 精确测定哈勃常数是现代宇宙学的一个重要科学问题. 近年来, 哈勃常数的局域直接测量值与全局模型拟合值之间出现了越来越严重的偏差, 其中局域直接测量值来自于晚期宇宙的局域距离阶梯测量结果, 而全局模型拟合值来自于早期宇宙的微波背景辐射对宇宙学标准模型的观测限制. 如果该偏差不是由其中任何一种观测手段的观测误差和系统误差所致, 那么很有可能意味着存在超出宇宙学标准模型的新物理. 本文从观测和模型两方面简述该哈勃常数危机问题, 并结合作者近年来对此问题的研究从观测和模型两方面进行展望.
拓扑激发驱动的热力学相变及其张量网络研究方法
宋峰峰, 张广铭
2023, 72 (23): 230301. doi: 10.7498/aps.72.20231152
摘要 +
对热力学相及相变的认知构成了我们理解整个物质世界的物理基础, 从朗道对称破缺相变范式到拓扑激发驱动的热力学相变, 相变理论的研究发展在物质科学进步之路上树立起了一座座丰碑. 一个著名的例子就是Berezinskii-Kosterlitz-Thouless相变, 它是在从低温到高温的演变过程中, U(1)旋转对称性没有自发破缺情形下, 成对涡旋的解耦合所致. 近期, 人们利用张量网络表示理论和数值计算方法, 将统计模型的转移矩阵对应为一维量子模型. 再根据量子模型纠缠熵的奇异性, 在热力学极限下可以精确确定系统的相图, 并准确计算各种物理量, 该研究方法为研究具有连续对称性的二维系统的拓扑相变注入了新活力.
外加电磁场下周期性体系的第一性原理计算方法
吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军
2023, 72 (23): 237102. doi: 10.7498/aps.72.20231313
摘要 +
电磁场对物质性质的影响和调控一直是科学研究的核心议题. 然而, 在计算凝聚态物理领域, 由于传统的密度泛函理论并不能轻易推广至含有外加电磁场的情景, 且外场往往会破缺周期性体系原本具有的平移对称性, 从而使得布洛赫定理失效. 因此, 利用第一性原理方法计算外场作用下的物质性质并非易事, 特别是在外场不能被视为微扰的情况下. 在过去的二十年中, 许多计算凝聚态物理学者致力于构建和发展适用于有限外场下周期性体系的第一性原理计算方法. 本文旨在系统地回顾这些理论方法及其在铁电、压电、铁磁、多铁等领域的应用. 本文首先简要介绍现代电极化理论, 并阐述基于此理论以及密度泛函理论, 构建出两种用于有限电场下计算的方法. 然后探讨将外磁场纳入密度泛函理论, 并对相关的现有计算手段以及所面临的挑战进行讨论. 接着回顾了被广泛用于研究磁性、铁电和多铁体系的第一性原理有效哈密顿量方法, 以及该方法在考虑外场时的延伸. 最后, 介绍了当下备受瞩目的利用机器学习中的神经网络方法构建有效哈密顿量模型的发展成果及在考虑外场下的拓展.
月球玻璃
赵睿, 沈来权, 常超, 白海洋, 汪卫华
2023, 72 (23): 236101. doi: 10.7498/aps.72.20231238
摘要 +
由火山喷发、陨石撞击和太阳风及宇宙射线辐照等非平衡过程产生的玻璃物质是月壤的重要组成部分, 这些不同成因的玻璃物质记录了月球起源和演化的重要历史信息. 本文主要综述了嫦娥5号(CE-5)取回的月壤中月球玻璃的研究进展, 包括其基本物性、微观结构、具体的形成机制以及它们在月球研究中的作用等. 研究发现月球玻璃可以像天然照相机一样记录下不同年代月球内部和表面的演化信息, 涉及月球的起源、岩浆活动、撞击环境、太空风化和水的来源等; 月球玻璃稳定的无序结构还能够长期保存月球资源, 据估计其存储的3He有26万吨, 存储的水高达2700亿吨; 月球玻璃类似月球上的时钟, 能够作为火山活动和撞击事件的时间标尺, 为研究月球水和磁场等的演化以及重构几十亿年的撞击历史提供重要支撑.
选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系
杨帅, 张浩, 何珂
2023, 72 (23): 238101. doi: 10.7498/aps.72.20231603
摘要 +
半导体-超导体杂化纳米线是用于研究马约拉纳零能模和拓扑量子计算的主要平台之一, 而基于III-V族半导体InAs和 InSb的纳米线则是当前此方向研究的主流材料体系. 尽管经过多年制备技术的改进和优化, 样品中过多的缺陷和杂质仍是阻碍此方向进一步发展的核心问题. 近年来, 一个新的马约拉纳纳米线候选体系——IV-VI族半导体PbTe-超导杂化纳米线吸引了很大关注并获得了快速的研究进展. PbTe的介电常数巨大, 且具有晶格匹配的衬底, 这些优势使其有潜力突破纳米线样品质量提升的瓶颈, 成为马约拉纳零能模的研究和拓扑量子计算实现的理想平台. 本文将简单介绍最近几年在PbTe纳米线和PbTe-超导杂化纳米线器件的选区分子束外延生长、输运性质研究方面取得的重要进展, 并对这种新的马约拉纳纳米线候选体系的优势、问题及基于其实现拓扑量子计算的前景进行讨论.
面向应用的新一代稀磁半导体研究进展
彭毅, 赵国强, 邓正, 靳常青
2024, 73 (1): 017503. doi: 10.7498/aps.73.20231940
摘要 +
稀磁半导体具有能同时调控电荷与自旋的特性, 是破解摩尔定律难题的候选材料之一. 我们团队率先提出了稀磁半导体中自旋和电荷掺杂分离的机制, 探索并研制了新一代稀磁半导体材料, 为突破经典稀磁半导体材料的制备瓶颈提供了有效解决方案. 以(Ba,K)(Zn,Mn)2As2等为代表的新一代稀磁半导体, 通过等价态的Mn掺杂引入自旋、异价态的非磁性离子掺杂引入电荷, 成功实现了230 K的居里温度, 刷新了可控型稀磁半导体的居里温度记录. 本文将重点介绍几种代表性的新一代稀磁半导体的设计与研制、新一代稀磁半导体的综合物性表征、大尺寸单晶生长以及基于单晶的安德烈夫异质结研制. 我们团队通过新一代稀磁半导体的新材料设计研制、综合物性研究、简单原型器件构建的“全链条”模式研究, 开拓了自旋电荷分别掺杂的稀磁半导体材料研究领域, 充分展现了自旋和电荷掺杂分离的新一代稀磁半导体材料潜在应用前景 .
量子信息科技的发展现状与展望
潘建伟
2024, 73 (1): 010301. doi: 10.7498/aps.73.20231795
摘要 +
20世纪初, 以原子能、半导体、激光、核磁共振、超导和全球卫星定位系统等重大技术发明为标志性成果的第一次量子革命, 促进了物质文明的巨大进步, 从根本上改变了人类的生活方式和社会面貌. 自20世纪90年代以来, 量子调控技术的巨大进步, 使得以量子信息科学为代表的量子科技突飞猛进, 标志着第二次量子革命的兴起. 量子信息科技包括量子通信、量子计算、量子精密测量等方面, 为保障信息传输安全、提高运算速度、提升测量精度等提供了革命性解决方案, 可为国家安全和国民经济高质量发展提供关键支撑. 经过近30年的发展, 我国在量子信息科技领域整体上已经实现了从跟踪、并跑到部分领跑的飞跃, 在量子通信的研究和应用方面处于国际领先地位; 在量子计算方面牢固占据国际第一方阵; 在量子精密测量的多个方向进入国际领先或先进水平. 当前, 需要根据国家战略需求和国际竞争态势, 做好未来5—10年我国在量子信息领域的发展重点研判, 率先建立下一代安全、高效、自主、可控的信息技术体系.
铁基超导体中的马约拉纳零能模及其阵列构筑
李更, 丁洪, 汪自强, 高鸿钧
2024, 73 (3): 030302. doi: 10.7498/aps.73.20232022
摘要 +
马约拉纳零能模服从非阿贝尔统计, 其编织操作可用于构筑拓扑量子比特, 是拓扑量子计算的基本单元, 可从原理上解决量子计算中环境噪声带来的退相干问题. 现有的马约拉纳零能模平台包括复合异质结构, 如拓扑绝缘体/超导体、半导体纳米线/超导体或一维磁性原子链/超导体等, 以及单一材料, 如2M-WS2, 4Hb-TaS2和铁基超导体等. 铁基超导体中的马约拉纳零能模具有材料平台简单、零能模纯净以及存活温度较高等一系列优势, 引起了广泛关注. 最近, 大面积、有序和可调控的马约拉纳零能模晶格阵列在铁基超导体LiFeAs中被观测到, 为未来的拓扑量子计算提供了一个理想平台. 本综述首先回顾铁基超导体中马约拉纳零能模的实验观测, 其中将重点介绍FeTe0.55Se0.45, (Li0.84Fe0.16)OHFeSe, CaKFe4As4和LiFeAs等材料体系. 接着介绍给出铁基超导体中马约拉纳零能模关键性实验证据的一系列工作. 然后进一步详细介绍近期LiFeAs中观测到有序和可调马约拉纳零能模晶格阵列的工作. 最后给出总结和对未来马约拉纳领域研究的展望.
量子多体系统中的拓扑序与分数化激发
顾昭龙, 李建新
2024, 73 (7): 070301. doi: 10.7498/aps.73.20240222
摘要 +
朗道费米液体理论和金兹堡-朗道相变理论是传统凝聚态物理两座重要的基石, 在处理BCS超导体和液氦超流体的形成机制等重要物理问题中取得了巨大成功. 然而, 以20世纪80年代量子霍尔效应和高温超导的发现为开端, 人们逐渐认识到, 对于一大类新的量子态, 比如分数量子霍尔态和量子自旋液体, 其性质超越了朗道费米液体理论和金兹堡-朗道相变理论. 拓扑序及其所具有的长程多体量子纠缠和分数化激发成为我们理解这些奇异量子态的关键概念. 在量子材料和量子模拟系统中设计并寻找具有拓扑序的物态、探测并操控其分数化激发是当代凝聚态物理重要的研究方向. 近期, 在里德伯原子体系、超导量子处理器和二维摩尔超晶格等具有高度可调控性的量子实验平台中, 拓扑序的量子模拟和操控得到了快速发展并取得了重要成果. 本文将简要论述拓扑序在传统凝聚态材料体系和量子模拟体系中最近的研究进展和挑战, 并对该领域未来可能的发展方向做出展望.
利用冷冻电镜研究蛋白质机器的非平衡统计物理
杨添, 欧阳颀
2024, 73 (13): 138701. doi: 10.7498/aps.73.20240592
摘要 +
对蛋白质机器的完整描述应包括其微观结构、热力学和动力学性质与工作机制. 最近兴起的冷冻电镜技术为蛋白质热力学与动力学的研究提供了全新的机遇. 目前已经有一些工作不仅利用冷冻电镜技术解析蛋白质的高分辨率结构, 还结合数据处理方法来分析蛋白质的构象分布并进一步推测其热力学性质. 然而, 利用冷冻电镜技术直接对蛋白质的动力学过程作观测与定量分析的方法还在发展的初级阶段. 本文选取了一个理想的蛋白质系统, 即蓝藻生物钟蛋白对冷冻电镜分析蛋白质非平衡过程的可能性进行探索. 基于已有的实验数据, 将蓝藻生物钟蛋白KaiC的平衡态统计物理模型推广至非平衡态, 对KaiC蛋白处于非平衡态时的动力学特征进行预测. 基于动力学预测结果, 本文揭示了冷冻电镜技术具有分析蓝藻生物钟蛋白的非平衡过程的可能, 为进一步的冷冻电镜实验提供了理论依据.
基于合成维度拓扑外尔点的波长选择热辐射超构表面
赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉
2024, 73 (11): 117802. doi: 10.7498/aps.73.20240512
摘要 +
黑体辐射通常具有覆盖整个红外波长范围的宽带光谱, 导致红外波段的大部分能量不能有效利用, 降低了辐射效率. 近年来, 具有二维亚波长人工纳米结构的超构表面因其在调节光学特性方面的灵活性而得到广泛研究, 这为调控热辐射提供了一个理想的平台. 在超构表面中, 采用合成维度方法为热辐射的精细调控开辟了新路径, 尤其突显了超越传统三维体系的物理特性和丰富的拓扑物理. 相比于在三维系统中探索物理现象, 研究一维或二维系统更为可行和高效. 合成维度的方法通过引入系统的结构或物理参数, 为操控光子系统中的内在自由度提供了可能性. 本文研究了利用合成维度方法实现波长选择热辐射. 首先在超晶格模型中构建合成拓扑外尔点, 通过角分辨热辐射谱(ARTES)对合成外尔锥进行实验表征, 在实现了合理的波长选择热辐射的同时能够尽可能地抑制其他波长的辐射, 对于实际的红外应用, 如热光伏和热管理装置, 是必不可少的.
轨道角动量量子光源的集成化研究
陈波, 刘进, 李俊韬, 王雪华
2024, 73 (16): 164204. doi: 10.7498/aps.73.20240791
摘要 +
量子光源是量子信息处理的关键器件之一, 是量子计算、量子通信、量子模拟等应用的重要基础, 基于量子光源制备量子态并提升其编码容量是量子信息技术发展的重大挑战. 轨道角动量 (OAM) 是光子一种无限维的空间自由度, 其空间模式构成无限维完备的正交基, 利用OAM制备高维量子态可大幅提升量子信息处理容量, 是高维量子信息处理的关键资源. 随着光量子技术的进步, 多种重要光量子器件已可在集成化芯片上实现. 然而, 微纳尺度下制备高维OAM量子态仍是实现量子光源集成化的挑战, 亟需深入研究和突破. 本文综述并讨论了集成化OAM量子光源的研究进展及其研究中面临的热点和难点问题, 为推进高维量子光源在量子信息处理中的研究及实用化进程提供参考.
自组装生物分子软物质材料及其物理特性
韩旭, 薛斌, 曹毅, 王炜
2024, 73 (17): 178103. doi: 10.7498/aps.73.20240947
摘要 +
自组装生物分子软物质材料是以生物分子或生物分子基元为构建单元, 通过自组织过程形成的一类新型软物质材料. 因其组成单元的生物特性和其中弱相互作用驱动组装的特征, 这类材料通常具有高度生物相容性、可逆组装、动态响应和微结构可控性等优势, 在生物医学、组织工程和柔性传感等领域中被广泛关注并得到了相关研发和应用. 本文简要介绍自组装生物分子软物质材料的基本构建原理和物理特性, 并以氨基酸、多肽分子等组装单元为例, 对三类自组装生物分子软物质材料(纳米材料、凝胶材料和复合材料)的自组装分子机制、材料构建思路、力学特性和功能应用场景做了具体阐述. 我们认为自组装生物分子软物质材料的研究, 将从结构单元的发掘和相关特性的表征, 向多功能性质定制与前端应用集成方向发展, 从而研发出崭新的复合智能生物软物质材料, 进一步促进其在生物医学、有机半导体和软体机器人等新兴领域中的应用.
磁约束燃烧等离子体物理的现状与展望
孙有文, 仇志勇, 万宝年
2024, 73 (17): 175202. doi: 10.7498/aps.73.20240831
摘要 +
本文从设计和运行托卡马克聚变堆需求的角度, 简要概述了托卡马克高约束运行方案和高能量粒子约束涉及的关键物理的发展现状和挑战. 过去几十年中, 托卡马克高约束模式物理研究取得了重要进展, 明确了聚变堆运行区的主要稳定性和约束的限制条件及其性能优化的主要调控手段, 发展了感应、混合和稳态等若干可能适用于未来托卡马克聚变堆的运行方案. 在反应堆阿尔法粒子加热主导的条件下, 潜在主导阿尔法粒子输运损失的阿尔芬不稳定性的线性谱特征和激发机制得到了充分的理解; 在阿尔芬不稳定性的非线性饱和、阿尔法粒子约束, 及通过加热沉积和微观湍流对等离子体约束的影响等方面开展了大量的实验和理论探索. 当前, 磁约束聚变物理已进入临近点火燃烧等离子体研究的新阶段, 面临着全新的挑战, 如: 聚变堆条件下如何实现高能量阿尔法粒子对等离子体有效自加热; 在阿尔法粒子自加热为主条件下, 如何通过调控等离子体关键参数分布维持等离子体稳定性和高约束性能, 实现聚变堆高效安全运行; 能否建立全尺度模型, 实现聚变堆复杂等离子体的长时间动力学过程的准确预测等. 这些关键问题的解决, 可为未来聚变堆的设计和运行奠定坚实的物理基础, 同时推动等离子体学科的发展.
长距离泵浦-探测系统的阿秒精度锁定
王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义
2024, 73 (19): 194201. doi: 10.7498/aps.73.20241061
摘要 +
随着超快科学和阿秒脉冲技术的发展, 基于孤立阿秒脉冲的泵浦-探测系统由于能实现对电子动力学的时间分辨测量, 已成为人们开展阿秒超快过程研究不可或缺的关键技术. 但要获得稳定可靠的泵浦-探测信号, 需要保证泵浦与探测光之间阿秒级的高精度同步, 较大的抖动将会导致信号产生弥散、甚至被淹埋在噪声中, 从而无法获得真实的物理图像. 由于阿秒脉冲从产生到应用终端之间的距离通常较长, 要实现阿秒时间分辨, 就必须对阿秒光脉冲与泵浦光进行阿秒量级的延时锁定. 针对这一问题, 本文发展了一种新型的双层光路系统, 通过对获得的干涉条纹进行快速傅里叶变换, 将获得的时间抖动量反馈给压电平移台实时补偿光程漂移, 实现了泵浦光与探测光之间阿秒量级的同步锁定. 应用该方案到光路长度从1—10 m的阿秒泵浦探测系统, 得到了锁定精度分别从7.64—31.76 as的结果, 分析表明系统延时误差与距离呈严格的线性关系, 决定数R2 = 0.96. 本研究工作表明, 使用小型干涉仪可实现对大科学装置中长距离阿秒泵浦探测系统的锁定精度进行快速检测, 这对如非共线阿秒条纹相机、时间分辨光电子能谱仪、相干合成等应用具有一定的参考意义.
超过30 GeV的强激光锁相直接电子加速
朱翰辰, 周楚亮, 李晓锋, 田野, 李儒新
2024, 73 (19): 195201. doi: 10.7498/aps.73.20240652
摘要 +
当超强激光斜入射辐照固体时, 预脉冲会先将固体表面等离子体化, 随后主脉冲将与等离子体相互作用并最终被等离子体反射. 同时, 等离子体中的部分电子将锁定在激光场的加速位相, 随后在激光场中获得有效加速, 该过程被称为锁相电子加速. 由于目前超强激光的电场强度已接近TV/m量级, 因此如果电子在激光场加速位相中停留足够长的时间, 便有可能获得百GeV甚至TeV量级的能量. 本文针对现有的超强激光参数, 通过单电子动力学模型, 对锁相机制中电子在激光场的加速过程展开系统研究. 研究结果表明, 峰值功率为10 PW量级的强激光可将电子直接加速至30 GeV左右. 本研究还给出了锁相加速机制中锁相电子的远场能量角分布, 以及最终能量等与激光场强度的定标关系. 考虑到激光强度的不断提高并且激光锁相电子加速机制也适用于正电子加速, 因此本研究结果将有望应用于小型化正负电子对撞机及高能伽马射线源等领域.
反物质研究进展
马余刚
2024, 73 (19): 191101. doi: 10.7498/aps.73.20241020
摘要 +
宇宙正反物质的不对称性起源是当今科学的重要未解之谜. 本文简要评述反物质研究历程和近期国际上的相关研究热点. 重点阐述了近些年来, 在相对论重离子碰撞实验中取得的反物质研究进展, 包括发现首个反物质超核(反超氚)、反物质氦4、反超氢4、反质子相互作用的首次测量、正反超氚核的质量和结合能的精确测量等. 在此基础上, 我们讨论了(反)轻核产生的不同物理机制. 同时, 也介绍了反氢原子实验、太空探测反物质等方面取得的最新成果, 并讨论这些进展对认识物质结构的启示.