-
The paper describes the principle of 0.2 THz stepped-frequency radar system which is utilized to achieve a one-dimensional range profile and range resolution. Terahertz (THz) stepped frequency radar is more susceptible to the phase error which will cause the spread and shift of range profile, thus affecting the quality of the high resolution range profile and signal-to-noise ratio. Therefore, a method of phase compensation is proposed to improve the range resolution. After phase compensation, the resolution and signal-to-noise ratio are improved remarkably. The range resolution can reach centimeter scale. Experimental and simulation results indicate that THz stepped frequency radar can reach high resolution range profile with the phase compensation method, which provides a foundation for further research on two-dimensional and three-dimensional image in the THz band.
-
Keywords:
- THz /
- stepped-frequecy radar /
- phase compensation /
- range profile
[1] Cooper K B, Dengler R J, Llombart N, et al. 2011 IEEE Trans. on Terahertz Sci. Technol. 1 169
[2] Cooper K B, Dengler R J, Llombart N, et al. 2010 Proceedinds of SPIE Orlando, 2010 7671 p76710Y-1
[3] Dengler R J, Cooper K B, Chattopadhyay G, et al. 2007 IEEE MTT-S International Microwave Symposium Honolulu, 2007 p1371
[4] Chattopadhyay G, Cooper K B, Dengler R, et al. 2008 19th International Symposium on Space Terahertz Technology Groningen, April 28-30, 2008 p300
[5] Cooper K B, Dengler R J, Chattopadhyay G, et al. 2008 IEEE Micro. and Wire. Comp. Lett. 18 64
[6] Essen H, Wahlen A, Sommeretal R, et al. 2007 Electron. Lett. 43 1114
[7] Mencia-Oliva B, Grajal J, Badolato A 2011 IEEE Radar Conference, May 2011 p389
[8] Broad Agency Announcement, Video Synthetic Aperture Radar, Strategic Techology Office DARPA-BAA-12-41 United States 2012
[9] Ding J S, Kahl M, Loffeld O, et al. 2013 IEEE Trans. on Terahertz Sci. Techol. 3 606
[10] China Academy of Engineering Physics THz Communication and Radar Technology Obtained Significant Breakthrough 2012 (in Chinese) [中国工程物理研究院太赫兹通信和雷达技术取得重要突破 2012 信息与电子工程]
[11] Gao X, Li C, Gu S M, Fang G Y 2012 IEEE Antennas and Wireless Propaga. Lett. 11 787
[12] Gao X, Li C, Fang G Y 2013 Chin. Phys. Lett. 30 068401
[13] Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401
[14] Zhang B, Pi Y M, Yang X B 2013 IEEE International Conference on Communications, June 2013 p921
-
[1] Cooper K B, Dengler R J, Llombart N, et al. 2011 IEEE Trans. on Terahertz Sci. Technol. 1 169
[2] Cooper K B, Dengler R J, Llombart N, et al. 2010 Proceedinds of SPIE Orlando, 2010 7671 p76710Y-1
[3] Dengler R J, Cooper K B, Chattopadhyay G, et al. 2007 IEEE MTT-S International Microwave Symposium Honolulu, 2007 p1371
[4] Chattopadhyay G, Cooper K B, Dengler R, et al. 2008 19th International Symposium on Space Terahertz Technology Groningen, April 28-30, 2008 p300
[5] Cooper K B, Dengler R J, Chattopadhyay G, et al. 2008 IEEE Micro. and Wire. Comp. Lett. 18 64
[6] Essen H, Wahlen A, Sommeretal R, et al. 2007 Electron. Lett. 43 1114
[7] Mencia-Oliva B, Grajal J, Badolato A 2011 IEEE Radar Conference, May 2011 p389
[8] Broad Agency Announcement, Video Synthetic Aperture Radar, Strategic Techology Office DARPA-BAA-12-41 United States 2012
[9] Ding J S, Kahl M, Loffeld O, et al. 2013 IEEE Trans. on Terahertz Sci. Techol. 3 606
[10] China Academy of Engineering Physics THz Communication and Radar Technology Obtained Significant Breakthrough 2012 (in Chinese) [中国工程物理研究院太赫兹通信和雷达技术取得重要突破 2012 信息与电子工程]
[11] Gao X, Li C, Gu S M, Fang G Y 2012 IEEE Antennas and Wireless Propaga. Lett. 11 787
[12] Gao X, Li C, Fang G Y 2013 Chin. Phys. Lett. 30 068401
[13] Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401
[14] Zhang B, Pi Y M, Yang X B 2013 IEEE International Conference on Communications, June 2013 p921
Catalog
Metrics
- Abstract views: 6737
- PDF Downloads: 849
- Cited By: 0