Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic mirror metasurfaces based on spoof surface plasmonic structures

Yin Yun-Qiao Wu Hong-Wei

Citation:

Magnetic mirror metasurfaces based on spoof surface plasmonic structures

Yin Yun-Qiao, Wu Hong-Wei
PDF
HTML
Get Citation
  • Mirrors can be seen everywhere in daily life and play an important role in modern optical systems. A traditional mirror, which is made of noble metals, usually has a zero electric field strength and maximal magnetic field strength at its surface induced by the out-of-phase of electric field and in-of-phase of magnetic field between the reflected field and incident field due to the boundary condition of perfect electric conductor. As the magnitude of local electric field determines the strength of the light-matter interaction, it is clear that this interaction is suppressed near the mirror surface. Magnetic mirror, which can enhance electric field on the surface, has been widely applied to strong light-matter interaction for biological sensing, material analysis, and imaging. However, the conventional smooth magnetic mirror with a plane surface is difficult to induce sufficient light-matter interaction when the matter has a complex geometrical shape. Here in this work, we propose a concept of magnetic mirror with a rough interface designed by an array of artificial surface plasmonic structures. The artificial surface plasmonic structure on a subwavelength scale is designed by periodically inserting spiral metallic strips into a dielectric cylinder to support the strong magnetic dipolar resonant mode. The magnetic dipolar resonance of the excited structure is induced by the displacement current circle. Therefore, the resonant frequency is related to the geometrical parameters of the helical structure closely. When we reduce the outer radius of the structure, the magnitude of the displacement current circle will change, resulting in blue-shift of the resonant frequency. At the same time, we also find that increasing the spiral degree of the structure will cause the magnetic dipolar resonance frequency to become red-shifted. Particularly, the same magnetic dipolar mode can be supported in a spiral structure of different size by tuning the spiral degree accordingly. In this context, we design a rough magnetic mirror constructed by the artificial surface plasmonic structures with various sizes, and demonstrate that the efficiency of rough magnetic mirror is in agreement with that of smooth magnetic mirror. The proposed rough magnetic mirror can provide the unique ability to enhance the interaction between light and complicated matter for the application of biological sensing and imaging in microwave and terahertz band.
      Corresponding author: Wu Hong-Wei, hwwu@aust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847002, 11904008), the China Postdoctoral Science Foundation (Grant No. 2019M662132), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21)
    [1]

    Esfandyarpour M, Garnett E, Cui Y, McGehee M D, Brongersma1 M L 2014 Nature Nanotech. 9 542Google Scholar

    [2]

    Liu S, Sinclair M B, Mahony T S, Jun Y C, Campione S, Ginn J, Bender D A, Wendt J R, Ihlefeld J F, Clem P G, Wright J B, Brener I 2014 Optica 1 250Google Scholar

    [3]

    Valagiannopoulos C A, Tukiainen A, Aho T, Niemi T, Guina M, Tretyakov S A, Simovski C R 2015 Phys. Rev. B 91 115305Google Scholar

    [4]

    Moitra P, Slovick B A, Li W, Kravchencko I I, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photon. 2 692Google Scholar

    [5]

    Zhou Y, He X T, Zhao F L, Dong J W 2016 Opt. Lett. 41 2209Google Scholar

    [6]

    Qin J, Zhao D, Luo S, Wang W, Lu J, Qiu M, Li Q 2017 Opt. Lett. 42 4478Google Scholar

    [7]

    Liu Y P, Dai Y Y, Feng Q C, Shan Y W, Du L, Xia Y Y, Lu G, Liu F, Du G Q, Tian C S, Wu S W, Shi L, Zi J 2017 Opt. Express 25 30754Google Scholar

    [8]

    Wang T T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [9]

    赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204Google Scholar

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar

    [10]

    鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206Google Scholar

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206Google Scholar

    [11]

    郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜 2015 物理学报 64 024219Google Scholar

    Zheng Y J, Gao J, Cao X Y, Li S J, Yang H H, Li W Q, Zhao Y, Liu H X 2015 Acta Phys. Sin. 64 024219Google Scholar

    [12]

    石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙 2019 物理学报 68 214208Google Scholar

    Shi T X, Dong L J, Chen Y Q, Liu Y H, Liu L X, Shi Y L 2019 Acta Phys. Sin. 68 214208Google Scholar

    [13]

    Park J, Kang J H, Kim S J, Liu X G, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [14]

    Choi S B, Park D J, Byun S J, Kyoung J, Hwang S W 2015 Adv. Opt. Mater. 3 1719Google Scholar

    [15]

    Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1Google Scholar

    [16]

    Headland D, Nirantar S, Withayachumnankul W, GutrufP, Abbott D, Bhaskaran M, Fumeaux C, Sriram S 2015 Adv. Mater. 27 7137Google Scholar

    [17]

    Ma Z J, Hanham S M, Albella P, Ng B, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photon. 3 1010Google Scholar

    [18]

    Lin L, Jiang Z H, Ma D, Yun S, Liu Z W, Werner D H, Mayer T S 2016 Appl. Phys. Lett. 108 171902Google Scholar

    [19]

    Liu W 2017 Phys. Rev. Lett. 119 123902Google Scholar

    [20]

    Liu W X, Sun Y, Lai Z Q, Chen H 2017 J. Opt. Soc. Am. B 34 1899Google Scholar

    [21]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [22]

    Shen X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [23]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B 2016 Opt. Lett. 41 2181Google Scholar

    [24]

    Li Z, Xu B, Liu L, Xu J, Chen C, Gu C, Zhou Y 2016 Sci. Rep. 6 27158Google Scholar

    [25]

    Huidobro P A, Shen X P, Cuerda J, Moreno E, Martin-Moreno L, Garcia-Vidal F J, Cui T J, Pendry J B 2014 Phys. Rev. X 4 021003

    [26]

    Wu H W, Han Y Z, Chen H J, Zhou W, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [27]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [28]

    Liao Z, Fernández-Domínguez A I, Zhang J J, Maier S A, CuiT J, Luo Y 2016 ACS Photon. 3 1768Google Scholar

    [29]

    Gentile M J, Nunezsanchez S, Barnes W L 2014 Nano Lett. 14 2339Google Scholar

    [30]

    Feuillet-Palma C, Todorov Y, Vasanelli A 2013 Sci. Rep. 3 1361Google Scholar

    [31]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952Google Scholar

  • 图 1  (a)人工表面等离激元结构示意图; (b)计算的由不同材料构成的人工表面等离激元结构的散射谱, 其中黑色曲线代表PEC, 蓝色曲线代表Ag, 红色曲线代表Cu; (c)图1(b)中的黑色实线对应的共振峰的近场模式Hz

    Figure 1.  (a) Schematic diagram of spoof surface plasmonic structure; (b)calculated scattering cross section spectrum of spoof surface plasmonic structure made of different materials, where the black curve represents PEC, the blue curve represents Ag and the red curve represents Cu; (c) near-field pattern ${H}_{ {z}}$ for the resonant peak in the black solid line of (b).

    图 2  (a)不同外半径下, 磁偶极子共振频率与螺旋度的关系, 图中的虚线和4条实线的交点代表对应于相同共振频率的4种结构; (b)不同内半径下, 磁偶极子共振频率与螺旋度的关系; (c) 对于不同的a/d, 磁偶极子共振频率与螺旋度的关系

    Figure 2.  (a) The magnetic dipole resonance frequency as the function of spiral degree for different outside radii. The intersection of the horizontal dotted line and the four solid curves in the figure represent the four structures corresponding to the same resonance frequency; (b) the relationship between the resonance frequency of magnetic dipole and spiral degree at different inner radii; (c) for different a/d, the relationship between the resonance frequency of magnetic dipole and spiral degree.

    图 3  具有 (a)理想PEC和(b)理想PMC边界壁的电场|E|的分布; (c)−(f)在图2中用“1” “2” “3”和“4”表示的4种结构的电场|E|的分布; (g)−(h) 对于(c)中的结构参数, 用不同材料制成的结构的透射谱和反射谱

    Figure 3.  Snapshots of the electric field |E| for boundary walls with (a) the ideal PEC and (b) the ideal PMC; (c)−(f) snapshots of the electric field |E| for four structures of Fig. 2 denoted by “1” “2” “3” and “4”; (g)−(h) for the structural parameters of (c), transmission and reflection spectrum of structures made of different materials.

    图 4  (a), (b)不同大小的光滑磁镜的电场|E|的分布及其局部放大图; (c)与(a)和(b)相同, 只是用粗糙的磁镜代替光滑的磁镜

    Figure 4.  (a), (b) Snapshots of the electric field |E| for smooth magnetic mirror of different sizes and their enlarged views; (c) same as (a) and (b) except replacing smooth magnetic mirror by rough magnetic mirror.

  • [1]

    Esfandyarpour M, Garnett E, Cui Y, McGehee M D, Brongersma1 M L 2014 Nature Nanotech. 9 542Google Scholar

    [2]

    Liu S, Sinclair M B, Mahony T S, Jun Y C, Campione S, Ginn J, Bender D A, Wendt J R, Ihlefeld J F, Clem P G, Wright J B, Brener I 2014 Optica 1 250Google Scholar

    [3]

    Valagiannopoulos C A, Tukiainen A, Aho T, Niemi T, Guina M, Tretyakov S A, Simovski C R 2015 Phys. Rev. B 91 115305Google Scholar

    [4]

    Moitra P, Slovick B A, Li W, Kravchencko I I, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photon. 2 692Google Scholar

    [5]

    Zhou Y, He X T, Zhao F L, Dong J W 2016 Opt. Lett. 41 2209Google Scholar

    [6]

    Qin J, Zhao D, Luo S, Wang W, Lu J, Qiu M, Li Q 2017 Opt. Lett. 42 4478Google Scholar

    [7]

    Liu Y P, Dai Y Y, Feng Q C, Shan Y W, Du L, Xia Y Y, Lu G, Liu F, Du G Q, Tian C S, Wu S W, Shi L, Zi J 2017 Opt. Express 25 30754Google Scholar

    [8]

    Wang T T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [9]

    赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204Google Scholar

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar

    [10]

    鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206Google Scholar

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206Google Scholar

    [11]

    郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜 2015 物理学报 64 024219Google Scholar

    Zheng Y J, Gao J, Cao X Y, Li S J, Yang H H, Li W Q, Zhao Y, Liu H X 2015 Acta Phys. Sin. 64 024219Google Scholar

    [12]

    石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙 2019 物理学报 68 214208Google Scholar

    Shi T X, Dong L J, Chen Y Q, Liu Y H, Liu L X, Shi Y L 2019 Acta Phys. Sin. 68 214208Google Scholar

    [13]

    Park J, Kang J H, Kim S J, Liu X G, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [14]

    Choi S B, Park D J, Byun S J, Kyoung J, Hwang S W 2015 Adv. Opt. Mater. 3 1719Google Scholar

    [15]

    Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1Google Scholar

    [16]

    Headland D, Nirantar S, Withayachumnankul W, GutrufP, Abbott D, Bhaskaran M, Fumeaux C, Sriram S 2015 Adv. Mater. 27 7137Google Scholar

    [17]

    Ma Z J, Hanham S M, Albella P, Ng B, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photon. 3 1010Google Scholar

    [18]

    Lin L, Jiang Z H, Ma D, Yun S, Liu Z W, Werner D H, Mayer T S 2016 Appl. Phys. Lett. 108 171902Google Scholar

    [19]

    Liu W 2017 Phys. Rev. Lett. 119 123902Google Scholar

    [20]

    Liu W X, Sun Y, Lai Z Q, Chen H 2017 J. Opt. Soc. Am. B 34 1899Google Scholar

    [21]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [22]

    Shen X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [23]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B 2016 Opt. Lett. 41 2181Google Scholar

    [24]

    Li Z, Xu B, Liu L, Xu J, Chen C, Gu C, Zhou Y 2016 Sci. Rep. 6 27158Google Scholar

    [25]

    Huidobro P A, Shen X P, Cuerda J, Moreno E, Martin-Moreno L, Garcia-Vidal F J, Cui T J, Pendry J B 2014 Phys. Rev. X 4 021003

    [26]

    Wu H W, Han Y Z, Chen H J, Zhou W, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [27]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [28]

    Liao Z, Fernández-Domínguez A I, Zhang J J, Maier S A, CuiT J, Luo Y 2016 ACS Photon. 3 1768Google Scholar

    [29]

    Gentile M J, Nunezsanchez S, Barnes W L 2014 Nano Lett. 14 2339Google Scholar

    [30]

    Feuillet-Palma C, Todorov Y, Vasanelli A 2013 Sci. Rep. 3 1361Google Scholar

    [31]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952Google Scholar

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] Sun Peng-Fei, Zhu Ke-Jian, Xu Peng-Fei, Liu Xing-Peng, Sun Tang-You, Li Hai-Ou, Zhou Zhi-Ping. Experimental research on ultracompact silicon hybrid plasmonic nanofocusing device. Acta Physica Sinica, 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency. Acta Physica Sinica, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [6] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [12] Wang Shan-Jiang, Su Dan, Zhang Tong. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [13] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [14] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [15] Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo. Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton. Acta Physica Sinica, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [16] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [17] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] Li Zhan-Long, Wang Yi-Ding, Zhou Mi, Men Zhi-Wei, Sun Cheng-Lin, Li Zuo-Wei. Stimulated Raman scattering in liquid water in a low-frequency region. Acta Physica Sinica, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [19] Ma Ning, Wang Mei-Shan, Yang Chuan-Lu, Xiong De-Lin, Li Xiao-Hu, Ma Xiao-Guang. Theoretical study of the influence of laser intensity on the population of the NO molecule electronic states. Acta Physica Sinica, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [20] DUAN LU-MING, GUO GUANG-CAN. ENERGY- LEVEL-EXCITATIONS——THE ELEMENTARY EXCITATIONS IN THE CRYSTAL-OPTICAL- FIELD STRONG-COUPLED SYSTEM. Acta Physica Sinica, 1997, 46(6): 1114-1117. doi: 10.7498/aps.46.1114
Metrics
  • Abstract views:  5905
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2020
  • Accepted Date:  18 July 2020
  • Available Online:  26 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回