Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

LU Wenqiang YI Yingting SONG Qianju ZHOU Zigang YI Yougen ZENG Qingdong YI Zao

Citation:

Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

LU Wenqiang, YI Yingting, SONG Qianju, ZHOU Zigang, YI Yougen, ZENG Qingdong, YI Zao
cstr: 32037.14.aps.74.20241516
PDF
HTML
Get Citation
  • In this work, a tunable perfect absorber in the terahertz range is designed based on Dirac semimetal nanowires, featuring high sensitivity, quality factor, and dual functionality. The absorber achieves perfect absorptions across seven bands in a range of 0–14.5 THz: f1 = 5.032 THz (84.43%), f2 = 5.859 THz (96.23%), f3 = 7.674 THz (91.36%), f4 = 9.654 THz (99.02%), f5 = 11.656 THz (93.84%), f6 = 12.514 THz (98.47%), and f7 = 14.01 THz (97.32%). To ensure structural stability during design, the periodicity of the wire array structure is carefully considered. Verification of the absorber’s performance is conducted through the calculation of impedance matching. The analyses of the surface electric field and magnetic field at resonance frequency elucidate the underlying physical mechanisms governing the absorber’s characteristics. The values of quality factor (Q) for the seven resonance points are computed, with a maximum Q of 219.41. Further investigations by changing the external refractive index show that the maximum sensitivity value and the figure of merit (FOM) value are 5421.43 GHz/RIU and 35.204 RIU–1, respectively. Then, by discussing the influence of key parameters on the device, we conclude that the device can achieve the choice of dual fixed performance. Dynamic modulation capabilities are demonstrated by changing the Dirac semimetal’s Fermi energy. Additionally, by changing the incident angle of the external electromagnetic wave, it is found that the device has good stability in the medium frequency band and low frequency band, but it is greatly affected by the external incident angle in the high frequency band, thus necessitating careful consideration in practical applications. In conclusion, the proposed absorber holds significant promise for imaging, sensing, and detection applications, providing the valuable insights for designing optoelectronic devices.
      Corresponding author: SONG Qianju, qjsong@swust.edu.cn ; YI Zao, yizaomy@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204388, 12074151) and the Scientific Research Foundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2022NSFSC1804).
    [1]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar

    [2]

    张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar

    [3]

    黄若彤, 李九生 2023 物理学报 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [4]

    Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [8]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar

    [10]

    Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar

    [12]

    Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [17]

    Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar

    [18]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar

    [23]

    Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar

    [32]

    Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar

    [34]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar

    [35]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar

    [36]

    Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar

    [37]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar

    [40]

    Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar

    [43]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar

    [45]

    Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar

    [46]

    Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar

    [47]

    Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [50]

    Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar

    [51]

    Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar

    [52]

    Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar

    [53]

    Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar

    [55]

    Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar

    [56]

    Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar

    [57]

    Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar

  • 图 1  吸收器的单元结构组成及其结构参数

    Figure 1.  Unit structure of the absorber and its structural parameters.

    图 2  不同费米能级下BDS介电常数的实部(a)和虚部(b)随频率的变化

    Figure 2.  Variations of real part (a) and imaginary part (b) of the permittivity of BDS with frequency at different Fermi levels.

    图 3  (a)吸收器在4—14.5 THz范围内的特性曲线; (b)吸收器在其工作区间的相对阻抗(实部和虚部)示意图

    Figure 3.  (a) Characteristic curves of the absorber in the range of 4–14.5 THz; (b) diagram of the relative impedance (real and imaginary parts) of the absorber in its operating interval.

    图 4  吸收器在不同频率处的电场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz

    Figure 4.  Electric field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.

    图 5  吸收器在不同频率处的磁场分布 (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 = 14.01 THz

    Figure 5.  Magnetic field distribution of absorber at different frequencies: (a) f 1 = 5.032 THz; (b) f 2 = 5.859 THz; (c) f 3 = 7.674 THz; (d) f 4 = 9.654 THz; (e) f 5 = 11.656 THz; (f) f 6 = 12.514 THz; (g) f 7 =14.01 THz.

    图 6  (a)不同折射率下吸收器的吸收光谱; (b)谐振频率点随折射率的变化; (c) 7种模式的吸收率与折射率的对应关系

    Figure 6.  (a) Absorption spectra of absorbers with different refractive indices; (b) the change of resonant frequency points with refractive index; (c) the corresponding relationship between absorptivity and refractive index of 7 modes.

    图 7  (a)不同BDS的费米能对吸收率的影响; (b) 7个共振频率点与费米能的关系; (c) 7个共振频率点处吸收率与费米能的关系

    Figure 7.  (a) Effect of Fermi energy of different Dirac semi-metals on absorption efficiency; (b) the relationship between seven resonance frequency points and Fermi energy; (c) the relationship between the absorption rate and Fermi energy at seven resonance frequency points.

    表 1  本文所提出的吸收器的Q值与近年来类似吸收器之间的比较

    Table 1.  Comparison of the Q value of the proposed absorber with similar absorbers in recent years.

    参考文献[48][49][50][51][52]本文
    Q55.597377.89106154219.41
    DownLoad: CSV

    表 2  本文所提出的吸收器的灵敏度与近年来类似吸收器之间的比较

    Table 2.  Comparison of the sensitivity of the proposed absorber with similar absorbers in recent years.

    参考文献 [51] [54] [55] [56] [57] 本文
    S/(GHZ·RIU–1) 23.8 74.43 96.2 560 2475 5421.43
    DownLoad: CSV
  • [1]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Adv. 5 210062Google Scholar

    [2]

    张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705Google Scholar

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705Google Scholar

    [3]

    黄若彤, 李九生 2023 物理学报 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [4]

    Yue Z, Li J T, Li J, Zheng C L, Liu J Y, Wang G C, Xu H, Chen M Y, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron Sci. 1 210014Google Scholar

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surf. Interfaces 40 103042Google Scholar

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron. Sci. 1 220003Google Scholar

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [8]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv. 6 220012Google Scholar

    [10]

    Song H J, Nagatsuma T 2011 IEEE T. Thz. Sci. Techn. 1 256Google Scholar

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv. 5 210093Google Scholar

    [12]

    Li F Y, Li Y X, Tang T T, Liao Y L, Lu Y C, Liu X Y, Wen Q Y 2022 J. Alloys Compd. 928 167232Google Scholar

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Adv. Opt. Mater. 3 376Google Scholar

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.Google Scholar

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [17]

    Cao T, Lian M, Chen X Y, Mao L B, Liu K, Jia J Y, Su Y, Ren H N, Zhang S J, Xu Y H, Chen J J, Tian Z, Guo D M 2022 Opto-Electron Sci. 1 210010Google Scholar

    [18]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Zhan Y, Yin H Y, Wang J H, Yao H W, Fan C Z 2022 Res. Opt. 8 100255Google Scholar

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111Google Scholar

    [23]

    Ullah K, Meng Y F, Sun Y, Yang Y K, Wang X J, Wang A R, Wang X R, Xiu F X, Shi Y, Wang F Q 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Opt. Commun. 569 130816Google Scholar

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Phys. Lett. A 517 129675Google Scholar

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489Google Scholar

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceram. Int. 50 23611Google Scholar

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Opt. Lasers Eng. 181 108368Google Scholar

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diam. Relat. Mater. 136 109960Google Scholar

    [32]

    Zhu J, Xiong J Y 2023 Opt. Express 31 36677Google Scholar

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese J. Phys. 89 740Google Scholar

    [34]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Adv. Mater. 30 1803430Google Scholar

    [35]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett. 5 175Google Scholar

    [36]

    Qu T, Zhao Y B, Li Z B, Wang P P, Cao S B, Xu Y W, Li Y Y, Chen A H 2016 Nanoscale 8 3268Google Scholar

    [37]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci. 1 220011Google Scholar

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diam. Relat. Mater. 128 109273Google Scholar

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surf. Interfaces 48 104248Google Scholar

    [40]

    Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, Jiang P P 2023 Appl. Therm. Eng. 232 121074Google Scholar

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings 13 531Google Scholar

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Res. Phys. 47 106364Google Scholar

    [43]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diam. Relat. Mater. 142 110793Google Scholar

    [45]

    Liang S R, Xu F, Yang H, Cheng S B, Yang W X, Yi Z, Song Q J, Wu P H, Chen J, Tang C J 2023 Opt. Laser Technol. 158 108789Google Scholar

    [46]

    Shangguan Q Y, Chen Z, Yang H, Cheng S B, Yang W X, Yi Z, Wu X, Wang S, Yi Y, Wu P H 2022 Sensors 22 6483Google Scholar

    [47]

    Shangguan Q Y, Chen H, Yang H, Liang S R, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diam. Relat. Mater. 125 108973Google Scholar

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [50]

    Li H J, Qin M, Wang L L, Zhai X, Ren R Z, Hu J G 2017 Opt. Express 25 31612Google Scholar

    [51]

    Wang Y L, Cheng W, Qin J Y, Han Z H 2019 Opt. Commun. 434 163Google Scholar

    [52]

    Zhou K, Cheng Q, Lu L, Li B W, Song J L, Luo Z X 2020 Opt. Express 28 1647Google Scholar

    [53]

    Li W X, Xu F, Cheng S B, Yang W X, Liu B, Liu M S, Yi Z, Tang B, Chen J, Sun T Y 2024 Opt. Laser Technol. 169 110186Google Scholar

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng. 46 420003Google Scholar

    [55]

    Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar

    [56]

    Lu W Q, Wu P H, Bian L, Yan J Q, Yi Z, Liu M S, Tang B, Li G F, Liu C 2024 Opt. Laser Technol. 174 110650Google Scholar

    [57]

    Chen T, Jiang W J, Yin X H 2021 Micro. Nanostructures 154 106898Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [7] Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by localized surface plasmon resonances. Acta Physica Sinica, 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [8] Zhang Jian-Guo,  Yi Zao,  Kang Yong-Qiang,  Ren Hao,  Wang Wen-Yan,  Zhou Jing-Fan,  Hao Hui-Zhen,  Chang Hui-Dong,  Gao Ying-Hao,  Chen Ya-Hui,  Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [9] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [10] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [11] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [12] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [13] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [14] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [15] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [18] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] Liu Ran, Shi Jin-Hui, Plum Eric, Fedotov Vassili, Zheludev Nikolay. Tuning Fano resonances in a planar metamaterial. Acta Physica Sinica, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [20] Ai Fen, Bai Yang, Xu Fang, Qiao Li-Jie, Zhou Ji. Research on the tunable left-handed properties of split-ring resonator with ferrite substrate. Acta Physica Sinica, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
Metrics
  • Abstract views:  234
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2024
  • Accepted Date:  10 December 2024
  • Available Online:  23 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回