Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray irradiation effects of carbon nanotube field-effect transistors

ZENG Tianxiang LI Jifang GUO Hongxia MA Wuying LEI Zhifeng ZHONG Xiangli ZHANG Hong WANG Songwen

Citation:

X-ray irradiation effects of carbon nanotube field-effect transistors

ZENG Tianxiang, LI Jifang, GUO Hongxia, MA Wuying, LEI Zhifeng, ZHONG Xiangli, ZHANG Hong, WANG Songwen
cstr: 32037.14.aps.74.20241670
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To further understand the patterns and mechanisms of total ionizing dose (TID) radiation damage in carbon nanotube field-effect transistor (CNTFET), the total dose effects of 10 keV X-ray irradiation on N-type and P-type CNTFETs are investigated in this work. The irradiation dose rate is 200 rad(Si)/s, with a cumulative dose of 100 krad(Si) for N-type devices and 90 krad(Si) for P-type devices. The differences in TID effect between N-type and P-type CNTFETs under the conditions of floating gate bias and on-state bias, the influence of irradiation on the hysteresis characteristics of N-type CNTFETs, and the influence of channel sizes on the TID effects of N-type CNTFETs are also explored. The results indicate that both types of transistors, after being irradiated, exhibit the threshold voltage shift, transconductance degradation, increase in subthreshold swing, and decrease in saturation current. In the irradiation process, N-type devices under floating gate bias suffer more severe damage than those under on-state bias, while P-type devices under on-state bias experience more significant damage than those under floating gate bias. The hysteresis widths of N-type devices decrease after being irradiated, and the TID damage becomes more severe with the increase of channel dimensions. The main reason for the degradation of device parameters is the trap charges generated in the irradiated process. The gate bias applied during irradiation affects the capture of electrons or holes by traps in the gate dielectric, resulting in different radiation damage characteristics for different types of devices. The reduction in the hysteresis width of N-type devices after being irradiated may be attributed to the negatively charged trap charges generated during irradiation, which hinders the capture of electrons by water molecules, OH groups, and traps in the gate dielectric. Moreover, the channel dimensions of the transistors also influence their radiation response: larger channel dimensions result in more trap charges generated in the gate dielectric and at the interface during irradiation, leading to more severe transistor damage.
      Corresponding author: GUO Hongxia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275230, 12027813).
    [1]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [2]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Zhu M G, Si J, Zhang Z Y, Peng L M 2018 Adv. Mater. 30 1707068Google Scholar

    [5]

    Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018 Nano Res. 11 300Google Scholar

    [6]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526Google Scholar

    [7]

    De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar

    [8]

    刘一凡, 张志勇 2022 物理学报 71 068503Google Scholar

    Liu Y F, Zhang Z Y 2022 Acta Phys. Sin. 71 068503Google Scholar

    [9]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001 Phys. Rev. B 63 245405Google Scholar

    [12]

    Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007 Appl. Phys. Lett. 91 173109Google Scholar

    [13]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [14]

    Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016 Carbon 108 363Google Scholar

    [15]

    Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021 J. Semicond. 42 112002Google Scholar

    [16]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [17]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [18]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22–25, 1994 p126

    [19]

    Oldham T R, Mclean F B 2002 IEEE T. Nucl. Sci. 50 483

    [20]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE T. Nucl. Sci. 31 1497Google Scholar

    [21]

    Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023 ACS Appl. Mater. Interfaces 15 10936Google Scholar

    [22]

    McMorrow J J, Cress C D, Affouda C 2012 ACS Nano 6 5040Google Scholar

    [23]

    Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003 Russian Microelectron. 32 25Google Scholar

    [24]

    Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022 IEEE T. Electron Dev. 69 1069Google Scholar

    [25]

    Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003 Nano Letters 3 193Google Scholar

    [26]

    Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K, Sirringhaus H, Friend R H 2005 Nature 434 194Google Scholar

    [27]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 99

    [28]

    Cai X, Gerlach C P, Frisbie C D 2007 J. Phys. Chem. C 111 452Google Scholar

    [29]

    Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441Google Scholar

    [30]

    Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE T. Dev. Mater. Re. 23 571Google Scholar

  • 图 1  器件结构示意图

    Figure 1.  Device structure diagram.

    图 2  辐照前后N型器件的电学曲线 (a)转移特性曲线; (b)输出特性曲线

    Figure 2.  Electrical curves of N-type devices before and after irradiation: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 3  辐照前后P型器件的电学曲线 (a)转移特性曲线; (b)输出特性曲线

    Figure 3.  Electrical curves of P-type devices before and after irradiation: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 4  辐照前后N型和P型器件的电学参数 (a)跨导; (b)亚阈值摆幅; (c)阈值电压

    Figure 4.  Electrical parameters of N-type and P-type devices before and after irradiation: (a) Transconductance; (b) subthreshold swing; (c) threshold voltage.

    图 5  不同偏置条件下辐照前后的转移特性曲线 (a) N型器件; (b) P型器件

    Figure 5.  Transfer characteristic curves before and after irradiation under different bias conditions: (a) N-type devices; (b) P-type devices.

    图 6  辐照前后回滞特性的变化

    Figure 6.  Changes in hysteresis characteristics before and after irradiation.

    图 7  辐照前后不同沟道尺寸的CNTFET转移曲线

    Figure 7.  Transfer curves of CNTFET with different channel sizes before and after irradiation.

    图 8  不同沟道尺寸的未辐照CNTFET归一化后的转移特性曲线与跨导

    Figure 8.  Normalized transfer characteristic curves and transconductance of unirradiated CNTFET with different channel sizes.

    表 1  N型和P型器件辐照前后电学参数变化量

    Table 1.  Changes in electrical parameters of N-type and P-type devices before and after irradiation.

    器件类型 ΔGm/μS 标准差 ΔSS/(mV·dec–1) 标准差 ΔVth/mV 标准差
    N型器件 –0.275 0.02 50 0.015 149 0.025
    P型器件 –1 0.022 20 0.02 –45 0.018
    DownLoad: CSV

    表 2  辐照前后不同沟道尺寸的CNTFET电学参数变化

    Table 2.  Changes in electrical parameters of CNTFET with different channel sizes before and after irradiation.

    宽长比 ΔGm/μS ΔSS/(mV·dec–1) ΔVth/V
    30 µm/5 µm –0.34 52 0.15
    35 µm/5 µm –0.35 53 0.19
    40 µm/5 µm –0.65 60 0.7
    DownLoad: CSV
  • [1]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [2]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Zhu M G, Si J, Zhang Z Y, Peng L M 2018 Adv. Mater. 30 1707068Google Scholar

    [5]

    Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018 Nano Res. 11 300Google Scholar

    [6]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526Google Scholar

    [7]

    De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar

    [8]

    刘一凡, 张志勇 2022 物理学报 71 068503Google Scholar

    Liu Y F, Zhang Z Y 2022 Acta Phys. Sin. 71 068503Google Scholar

    [9]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001 Phys. Rev. B 63 245405Google Scholar

    [12]

    Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007 Appl. Phys. Lett. 91 173109Google Scholar

    [13]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [14]

    Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016 Carbon 108 363Google Scholar

    [15]

    Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021 J. Semicond. 42 112002Google Scholar

    [16]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [17]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [18]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22–25, 1994 p126

    [19]

    Oldham T R, Mclean F B 2002 IEEE T. Nucl. Sci. 50 483

    [20]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE T. Nucl. Sci. 31 1497Google Scholar

    [21]

    Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023 ACS Appl. Mater. Interfaces 15 10936Google Scholar

    [22]

    McMorrow J J, Cress C D, Affouda C 2012 ACS Nano 6 5040Google Scholar

    [23]

    Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003 Russian Microelectron. 32 25Google Scholar

    [24]

    Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022 IEEE T. Electron Dev. 69 1069Google Scholar

    [25]

    Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003 Nano Letters 3 193Google Scholar

    [26]

    Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K, Sirringhaus H, Friend R H 2005 Nature 434 194Google Scholar

    [27]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 99

    [28]

    Cai X, Gerlach C P, Frisbie C D 2007 J. Phys. Chem. C 111 452Google Scholar

    [29]

    Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441Google Scholar

    [30]

    Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE T. Dev. Mater. Re. 23 571Google Scholar

  • [1] PENG Zhigang, BAI Haojie, LIU Fang, LI Yang, HE Huan, LI Pei, HE Chaohui, LI Yonghong. Effect of proton cumulative radiation on saturation output in CMOS image sensors. Acta Physica Sinica, 2025, 74(2): 024203. doi: 10.7498/aps.74.20241352
    [2] ZHU Wenlu, GUO Hongxia, LI Yangfan, MA Wuying, ZHANG Fengqi, BAI Ruxue, ZHONG Xiangli, LI Jifang, CAO Yanhui, JU Anan. Total ionizing dose effect of double-trench SiC MOSFET. Acta Physica Sinica, 2025, 74(5): 056101. doi: 10.7498/aps.74.20241641
    [3] Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi. Total X-ray dose effect on graphene field effect transistor. Acta Physica Sinica, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [4] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [5] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [6] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [7] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [8] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [10] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [11] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [15] Zhou Xin-Jie, Li Lei-Lei, Zhou Yi, Luo Jing, Yu Zong-Guang. Back-gate bias effect on partially depleted SOI/MOS back-gate performances under radiation condition. Acta Physica Sinica, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [16] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [17] Liu Xing-Hui, Zhang Jun-Song, Wang Ji-Wei, Ao Qiang, Wang Zhen, Ma Ying, Li Xin, Wang Zhen-Shi, Wang Rui-Yu. Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Acta Physica Sinica, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [18] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [19] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, ZHOU HUI, GONG JIAN-CHENG, HAN FU-BIN, GUAN YING, WU GUO-RONG. STUDY OF RELATIVE DOSE-ENHANCEMENT EFFECTS ON CMOS DEVICE IRRADIATED BY STEADY-STATE AND TRANSIENT PULSED X-RAYS. Acta Physica Sinica, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
Metrics
  • Abstract views:  528
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2024
  • Accepted Date:  23 December 2024
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回