Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis

JIA Yuhao ZHANG Xiaomin ZHAO Zhipeng WU Qiong ZHANG Linlin

Citation:

Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis

JIA Yuhao, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHANG Linlin
cstr: 32037.14.aps.74.20250430
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultrasound thrombolysis primarily relies on transient shockwaves and microjets from collapsing cavitation bubbles to mechanically disrupt thrombus structures. Although it shows clinical potential, its efficacy is still limited by low cavitation energy transfer efficiency and unpredictable tissue damage, due to incomplete understanding of single bubble dynamics and the synergistic mechanisms of multi-bubble interactions.This study introduces a hyper-viscoelastic constitutive model incorporating blood clot mechanics to analyze stress accumulation under sequential microbubble impacts. A gas-liquid-solid coupling multi-physics model quantifies bubble collapse dynamics near thrombi, and integrates structural damping terms to represent energy dissipation during fluid-solid interactions. Parameter analysis shows that the intensity of jet impact is positively correlated with thrombus mass and ultrasound amplitude, but inversely related to dimensionless distance, ultrasound frequency, and initial bubble radius.The proposed rate-dependent Ogden-Prony model effectively captures thrombus behaviors under transient impacts, including strain hardening, rate-dependent strengthening, and stress relaxation. Sequential jet impacts induce cumulative stress through strain hardening, with multi-bubble synergy achieving significantly higher stresses than single-bubble impact. Optimal bubble radius distribution can amplify the normal/shear stress inside thrombi—maximum normal stress generated by the double bubble impact sequences is 6.02 MPa, exceeding the tensile strength of the thrombus, while the maximum stress generated by single bubble impact is 1.45 MPa. The key quantitative relationships between bubble cluster parameters, dimensionless distance, thrombus mass, and stress accumulation provide optimization guidelines for ultrasound thrombolysis. Notably, controlled multi-bubble jet impact sequences with attenuated pressure peaks demonstrate enhanced therapeutic potential through cumulative mechanical effects rather than a single high-intensity impact.
      Corresponding author: ZHANG Xiaomin, xiaomin@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12272065) and the Graduate Research Innovation Project in Chongqing, China (Grant No. CYB22026).
    [1]

    Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247

    [2]

    GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736Google Scholar

    [3]

    Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74Google Scholar

    [4]

    Alexandrov A V, Köhrmann M, Soinne L, et al. 2019 Lancet Neurol. 18 338Google Scholar

    [5]

    夏青青, 刘俐 2019 心血管病学进展 40 564

    Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564

    [6]

    Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447Google Scholar

    [7]

    Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115Google Scholar

    [8]

    Iga Y, Sasaki H 2023 Phys. Fluids 35 023312Google Scholar

    [9]

    Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322Google Scholar

    [10]

    Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703Google Scholar

    [11]

    Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122Google Scholar

    [12]

    Ren Z B, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z G, Liu S H 2023 J. Fluid Mech. 976 A11Google Scholar

    [13]

    Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910Google Scholar

    [14]

    Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6Google Scholar

    [15]

    Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11Google Scholar

    [16]

    Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102Google Scholar

    [17]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [18]

    Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301Google Scholar

    [19]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [20]

    Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705Google Scholar

    [21]

    Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111Google Scholar

    [22]

    Lauterborn W, Hentschel W 1985 Ultrasonics 23 260Google Scholar

    [23]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927Google Scholar

    [24]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [25]

    Qin D, Lei S, Zhang B Y, Liu Y P, Tian J, Ji X J, Yang H 2024 Ultrason. Sonochem. 104 106808Google Scholar

    [26]

    许龙, 汪尧 2023 物理学报 72 024303Google Scholar

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 024303Google Scholar

    [27]

    Wang X, Chen W Z, Zhou M, Zhang Z K, Zhang L L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [28]

    张凌新, 闻仲卿, 邵雪明 2013 力学学报 45 861

    Zhang L X, Wen Z Q, Shao X M 2013 Chin. J. Theor. Appl. Mech. 45 861

    [29]

    Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115Google Scholar

    [30]

    Hong S, Son G 2023 Ultrason. Sonochem. 92 106252Google Scholar

    [31]

    Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101Google Scholar

    [32]

    Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104Google Scholar

    [33]

    Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016Google Scholar

    [34]

    Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562Google Scholar

    [35]

    Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818Google Scholar

    [36]

    Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785Google Scholar

    [37]

    Ri J, Pang N, Bai S, Xu J L, Xu L S, Ri S, Yao Y D, Greenwald S E 2023 Phys. Fluids 35 011904Google Scholar

    [38]

    Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95Google Scholar

    [39]

    Ma X J, Huang B, Zhao X, Wang Y, Chang Q, Qiu S C, Fu X Y, Wang G Y 2018 Ultrason. Sonochem. 43 80Google Scholar

    [40]

    Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759Google Scholar

    [41]

    Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355Google Scholar

    [42]

    Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66Google Scholar

    [43]

    Liu Y, Zheng Y, Reddy A S, et al. 2021 J. Neurosurg. 134 893Google Scholar

    [44]

    Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327Google Scholar

    [45]

    Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125Google Scholar

  • 图 1  血栓附近超声空化模型示意图

    Figure 1.  Schematic diagram of ultrasound cavitation model near thrombus.

    图 2  气泡半径的数值解与实验数据的对比

    Figure 2.  Comparison between numerical solution of bubble radius and experimental data.

    图 3  超声作用下血栓附近空化气泡演化压力云图(黑色实线为气泡轮廓) (a) t = 17.9 μs; (b) t = 38.2 μs; (c) t = 39.3 μs; (d) t = 40.7 μs

    Figure 3.  Evolution pressure cloud map of cavitation bubbles near thrombus under ultrasound (black solid line represents bubble contour): (a) t = 17.9 μs; (b) t = 38.2 μs; (c) t = 39.3 μs; (d) t = 40.7 μs.

    图 4  (a)超声振幅对壁面冲击的影响; (b)超声频率对壁面冲击的影响

    Figure 4.  (a) Influence of ultrasonic amplitude on wall impact; (b) influence of ultrasonic frequency on wall impact.

    图 5  (a)血栓质量对壁面冲击的影响; (b)近壁距离对壁面冲击的影响; (c)气泡初始半径对壁面冲击的影响

    Figure 5.  (a) Influence of thrombus quality on wall impact; (b) influence of close wall distance on wall impact; (c) influence of initial bubble radius on wall impact.

    图 6  (a)准静态下应力-应变曲线对比, Ogden模型参数${\mu _1} = 5946.78{\text{ }}{\mathrm{Pa}}$, ${\alpha _1} = 11.05$; (b)不同加载速率下血栓应力-应变响应, Prony级数参数${g_i} = \left[ {0.2, 0.2, 0.1, 0.1, 0.1} \right]$, ${\tau _i} = \left[ {1 \times {{10}^{ - 6}}, 5 \times {{10}^{ - 5}}, 1 \times {{10}^{ - 3}}, 0.1, 10} \right]{\text{ }}{\mathrm{s}}$; (c)不同应变-加载速率下的应力时程曲线

    Figure 6.  (a) Comparison of stress-strain curves under quasi-static conditions, Ogden model parameters:${\mu _1} = 5946.78{\text{ }}{\mathrm{Pa}}$, ${\alpha _1} = 11.05$; (b) stress strain response of thrombus under different loading rates, Prony series parameters: ${g_i} = $$ \left[ {0.2, 0.2, 0.1, 0.1, 0.1} \right]$, ${\tau _i} = [ 1 \times {{10}^{ - 6}}, 5 \times {{10}^{ - 5}}, 1 \times {{10}^{ - 3}}, $$ 0.1, 10 ]{\text{ }}{\mathrm{s}}$; (c) stress time history curves under different strain loading rates.

    图 7  气泡初始半径对射流冲击到达时间及压力峰值的影响

    Figure 7.  The influence of initial bubble radius on the arrival time and pressure peak of jet impact.

    图 8  双气泡冲击载荷序列构建 (a) ΔR/Rc > 8.3%; (b) ΔR/Rc ≤ 8.3%

    Figure 8.  Construction of double bubble impact load sequence: (a) ΔR/Rc > 8.3%; (b) ΔR/Rc ≤ 8.3%.

    图 9  射流冲击血栓模型示意图

    Figure 9.  Schematic diagram of jet impingement thrombus model.

    图 10  血栓内剪应力分布(AB为凹陷侧截线) (a) t = 4.6 μs; (b) t = 5.0 μs; (c) t = 20.0 μs;血栓内正应力分布(CD为轴线) (d) t = 4.6 μs; (e) t = 5.5 μs; (f) t = 20.0 μs

    Figure 10.  The distribution of shear stress within the thrombus, where AB is the concave side intercept line: (a) t = 4.6 μs; (b) t = 5.0 μs; (c) t = 20.0 μs; normal stress distribution within the thrombus, with CD as the axis: (d) t = 4.6 μs; (e) t = 5.5 μs; (f) t = 20.0 μs.

    图 11  (a)双气泡冲击下截线AB上剪应力时空演变; (b)双气泡冲击下轴线上距壁面0.2 mm位置处正应力应变响应

    Figure 11.  (a) Temporal and spatial evolution of shear stress on section AB under double bubble impact; (b) normal stress-strain response at a distance of 0.2 mm from the wall on the axis under double bubble impact.

    图 12  泡群初始半径分布范围对应力累积效应的影响

    Figure 12.  Influence of initial radius distribution range of bubble group on stress accumulation effect.

    图 13  最大冲击压力PDmax/PSmax与间距S/R之间的关系(PDmax为双气泡最大冲击压力, PSmax为单气泡最大冲击压力, S为两个气泡中心的间距, R为气泡半径)

    Figure 13.  The relationship between the maximum impact pressure PDmax/PSmax and the interval S/R (PDmax is the maximum impact pressure of a double bubble, PSmax is the maximum impact pressure of a single bubble, S is the distance between the centers of two bubbles, and R is the bubble radius).

    图 14  泡间耦合效应对血栓内应力累积效果的影响

    Figure 14.  Influence of bubble coupling effect on stress accumulation effect in thrombus.

    图 15  剪应力增幅η的三维云图

    Figure 15.  Three dimensional cloud map of shear stress amplification η.

    表 1  仿真中使用的参数值

    Table 1.  Parameter values used in simulation.

    参数 参数值
    参考压力 ${p_0}$/Pa 101325
    血液密度 ${\rho _0}$/(kg·m–3) 1059
    血液黏度 ${\mu _{\text{l}}}$/(Pa·s) 0.005
    血液体积模量 ${K_0}$/GPa 2.5
    血液密度指数 $n$ 7.15
    血液表面张力系数 $\sigma $/(N·m–1) 0.072
    损耗因子[38] $\tilde \eta $ 0.03
    气体黏度${\mu _{\text{g}}}$/(Pa·s) $1.34 \times 1{0^{ - 5}}$
    DownLoad: CSV

    表 2  泡群初始半径分布设计(以中心半径Rc = 60 μm 为基准)

    Table 2.  Design of initial radius distribution for bubble groups (based on the center radius Rc = 60 μm).

    分布范围
    R/Rc)/%
    半径区间/μmRmaxRmin
    射流时序差/μs
    1.759—610.4
    3.358—620.9
    5.057—631.3
    8.355—652.2
    16.750—704.4
    33.340—809.0
    DownLoad: CSV
  • [1]

    Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247

    [2]

    GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736Google Scholar

    [3]

    Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74Google Scholar

    [4]

    Alexandrov A V, Köhrmann M, Soinne L, et al. 2019 Lancet Neurol. 18 338Google Scholar

    [5]

    夏青青, 刘俐 2019 心血管病学进展 40 564

    Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564

    [6]

    Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447Google Scholar

    [7]

    Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115Google Scholar

    [8]

    Iga Y, Sasaki H 2023 Phys. Fluids 35 023312Google Scholar

    [9]

    Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322Google Scholar

    [10]

    Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703Google Scholar

    [11]

    Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122Google Scholar

    [12]

    Ren Z B, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z G, Liu S H 2023 J. Fluid Mech. 976 A11Google Scholar

    [13]

    Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910Google Scholar

    [14]

    Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6Google Scholar

    [15]

    Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11Google Scholar

    [16]

    Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102Google Scholar

    [17]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [18]

    Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301Google Scholar

    [19]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [20]

    Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705Google Scholar

    [21]

    Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111Google Scholar

    [22]

    Lauterborn W, Hentschel W 1985 Ultrasonics 23 260Google Scholar

    [23]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927Google Scholar

    [24]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [25]

    Qin D, Lei S, Zhang B Y, Liu Y P, Tian J, Ji X J, Yang H 2024 Ultrason. Sonochem. 104 106808Google Scholar

    [26]

    许龙, 汪尧 2023 物理学报 72 024303Google Scholar

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 024303Google Scholar

    [27]

    Wang X, Chen W Z, Zhou M, Zhang Z K, Zhang L L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [28]

    张凌新, 闻仲卿, 邵雪明 2013 力学学报 45 861

    Zhang L X, Wen Z Q, Shao X M 2013 Chin. J. Theor. Appl. Mech. 45 861

    [29]

    Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115Google Scholar

    [30]

    Hong S, Son G 2023 Ultrason. Sonochem. 92 106252Google Scholar

    [31]

    Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101Google Scholar

    [32]

    Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104Google Scholar

    [33]

    Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016Google Scholar

    [34]

    Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562Google Scholar

    [35]

    Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818Google Scholar

    [36]

    Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785Google Scholar

    [37]

    Ri J, Pang N, Bai S, Xu J L, Xu L S, Ri S, Yao Y D, Greenwald S E 2023 Phys. Fluids 35 011904Google Scholar

    [38]

    Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95Google Scholar

    [39]

    Ma X J, Huang B, Zhao X, Wang Y, Chang Q, Qiu S C, Fu X Y, Wang G Y 2018 Ultrason. Sonochem. 43 80Google Scholar

    [40]

    Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759Google Scholar

    [41]

    Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355Google Scholar

    [42]

    Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66Google Scholar

    [43]

    Liu Y, Zheng Y, Reddy A S, et al. 2021 J. Neurosurg. 134 893Google Scholar

    [44]

    Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327Google Scholar

    [45]

    Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125Google Scholar

  • [1] PENG Zhigang, BAI Haojie, LIU Fang, LI Yang, HE Huan, LI Pei, HE Chaohui, LI Yonghong. Effect of proton cumulative radiation on saturation output in CMOS image sensors. Acta Physica Sinica, 2025, 74(2): 024203. doi: 10.7498/aps.74.20241352
    [2] MO Fan, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHENG Chaochao, ZHANG Linlin, ZHAO Libo, CHENG Ke, LIU Shudong, TANG Ge. Numerical study on ultrasonic propagation and shock wave formation in fibrin clots dependent on concentration. Acta Physica Sinica, 2025, 74(15): . doi: 10.7498/aps.74.20250555
    [3] Zou Xing, Zhu Zhe, Fang Wen-Xiao. Simulation of surface stress and solid solution modification phase field of nanowire electrocaloric effect. Acta Physica Sinica, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [4] Huang Chen-Yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Analysis of suppressive effect of large bubbles on oscillation of cavitation bubble in cavitation field. Acta Physica Sinica, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [5] Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [6] Song Ren-Jie, Yuan Zi-Yan, Zhang Qi, Yu Jie, Xue Hong-Hui, Tu Juan, Zhang Dong. Method of spatiotemporally monitoring acoustic cavitation based on radio frequency signal entropy analysis. Acta Physica Sinica, 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [7] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [8] Wang Peng, Shen Chi-Bing. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [9] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [10] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [11] Wu Wen-Hua, Zhai Wei, Hu Hai-Bao, Wei Bing-Bo. Acoustic field and convection pattern within liquid material during ultrasonic processing. Acta Physica Sinica, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [12] Wang Cheng-Hui, Mo Run-Yang, Hu Jing. Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound. Acta Physica Sinica, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [13] Guo Ce, Zhu Xi-Jing, Wang Jian-Qing, Ye Lin-Zheng. Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field. Acta Physica Sinica, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [14] Zhao Fu-Ze, Zhu Shao-Zhen, Feng Xiao-Hui, Yang Yuan-Sheng. Sound field simulation of ultrasonic processing to fabricate carbon nanotubes reinforced AZ91D composites. Acta Physica Sinica, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [15] Lu Lu, Ji Hong-Fei, Guo Ge-Pu, Guo Xia-Sheng, Tu Juan, Qiu Yuan-Yuan, Zhang Dong. Ultrasonic enhancement of the porosity of alginate scaffold. Acta Physica Sinica, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [16] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [17] Huang Jiam-Guo, Liu Dan-Qiu, Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Han Jian-Wei. Simulation of culmulated microimpacts of micro debris to solar cells and function degradation. Acta Physica Sinica, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [18] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. The largest Lyapunov exponent and the turbulent fluctuation of the time series from air turbulent jets. Acta Physica Sinica, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [19] Lu Yi-Gang, Wu Xiong-Hui. Computational analysis of double-bubble ultrasonic cavitation. Acta Physica Sinica, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [20] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
Metrics
  • Abstract views:  382
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2025
  • Accepted Date:  12 May 2025
  • Available Online:  16 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回