Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear Hall effect in semi-magnetic topological insulators

WU Ke ZHU Jiongyi CHEN Rui ZHOU Bin

Citation:

Nonlinear Hall effect in semi-magnetic topological insulators

WU Ke, ZHU Jiongyi, CHEN Rui, ZHOU Bin
cstr: 32037.14.aps.74.20250814
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Semi-magnetic topological insulators have received wide attention because of their unique electrical properties, including the emergent half-quantized linear Hall effect. However, nonlinear Hall effects in these materials have not been studied. In this work, the nonlinear Hall effect in semi-magnetic topological insulators is investigated, and its dependence on the orientation of the magnetic moment in the magnetic layer is explored. By using both analytical method and numerical method, it is demonstrated that the nonlinear Hall conductance is more sensitive to the horizontal component of the magnetic moment than the linear Hall conductance, which predominantly depends on the vertical component of the magnetic moment. Our results reveal that the nonlinear Hall conductance can serve as a sensitive probe to detect changes in the orientation of the magnetic moment in experiments. Specifically, it is shown that the nonlinear Hall effect is governed by the Berry dipole moment, whose magnitude and direction vary with the tilt of the magnetic moment, thereby offering a unique signature of its orientation. The potential for using both linear and nonlinear Hall effects to map the direction of the magnetic moment in semi-magnetic topological insulators is highlighted in this work. Besides, the measurement of the nonlinear Hall effect can be directly implemented using existing experimental setups, without the need for additional modifications. The findings offer insights into the quantum transport behavior of the semi-magnetic topological insulator and pave the way for new experimental techniques to manipulate and probe their magnetic properties.
      Corresponding author: CHEN Rui, chenr@hubu.edu.cn ; ZHOU Bin, binzhou@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074107, 12304195), the Program of Outstanding Young and Middle-aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province, China (Grant No. T2020001), the Innovation Group Project of the Natural Science Foundation of Hubei Province, China (Grant No. 2022CFA012), the Chutian Scholars Program in Hubei Province, the Natural Science Foundation of Hubei Province, China (Grant No. 2025AFA081), the Key R&D Program of Wuhan, China (Grant No. 2025050602030069), and the Original Seed Program of Hubei University, China.
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [4]

    Bernevig B A, Felser C, Beidenkopf H 2022 Nature 603 41Google Scholar

    [5]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [6]

    Liu J, Hesjedal T 2021 Adv. Mater. 35 2102427Google Scholar

    [7]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [8]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [9]

    Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390Google Scholar

    [10]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [11]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [12]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [13]

    Varnava N, Vanderbilt D 2018 Phys. Rev. B 98 245117Google Scholar

    [14]

    Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409Google Scholar

    [15]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [16]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [17]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [18]

    Lian Z, Wang Y, Wang Y, Dong W H, Feng Y, Dong Z, Ma M, Yang S, Xu L, Li Y, Fu B, Li Y, Jiang W, Xu Y, Liu C, Zhang J, Wang Y 2025 Nature 641 70Google Scholar

    [19]

    Zhu K, Cheng Y, Liao M, Chong S K, Zhang D, He K, Wang K L, Chang K, Deng P 2024 Nano Lett. 24 2181Google Scholar

    [20]

    Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744Google Scholar

    [21]

    Suárez-Rodríguez M, Juan F, Souza I, Gobbi M, Casanova F, Hueso L 2025 Nat. Mater. 24 1005Google Scholar

    [22]

    Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z 2024 Nat. Mater. 23 1179Google Scholar

    [23]

    Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G 2023 Phys. Rev. Lett. 131 256201Google Scholar

    [24]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [25]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [26]

    Shvetsov O O, Esin V D, Timonina A V, Kolesnikov N N, Deviatov E V 2019 JETP Lett. 109 715Google Scholar

    [27]

    Dzsaber S, Yan X, Taupin M, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q, Paschen S 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2013386118Google Scholar

    [28]

    Qin M S, Zhu P E, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, Liao Z M 2021 Chin. Phys. Lett. 38 017301Google Scholar

    [29]

    Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 Natl. Sci. Rev. 10 nwac232Google Scholar

    [30]

    Ho S C, Chang C H, Hsieh Y C, Lo S T, Huang B, Vu T H Y, Ortix C, Chen T M 2021 Nat. Electron. 4 116Google Scholar

    [31]

    Shen S Q 2017 Topological Insulators (Singapore: Springer) pp207–229

    [32]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107(RGoogle Scholar

    [33]

    Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar

    [34]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [35]

    Li R H, Heinonen O, Burkov A, Zhang S 2021 Phys. Rev. B 103 045105Google Scholar

    [36]

    Nandy S, Zeng C, Tewari S 2021 Phys. Rev. B 104 205124Google Scholar

    [37]

    Wang Y, Zhang Z, Zhu Z G, Su G 2024 Phys. Rev. B 109 085419Google Scholar

  • 图 1  半磁性拓扑绝缘体的磁矩方向可以通过施加外磁场进行调控 (a)在垂直磁场$ B_z $的作用下, 磁矩朝向z方向; (b)加入面内磁场后, 磁矩会沿着磁场方向发生倾斜; (c)球坐标下的磁矩方向表示, 其中ϕ为极角, θ为方位角

    Figure 1.  In the semi-magnetic topological insulator, the direction of the magnetic moment can be controlled by applying an external magnetic field: (a) In the presence of a vertical magnetic field $ B_z $, the magnetic moment is tuned along the z direction; (b) in the presence of an in-plane magnetic field, the magnetic moment will tilt along the direction of the magnetic field; (c) the direction of the magnetic moment in spherical coordinates, where ϕ is the polar angle and θ is the azimuth angle.

    图 2  (a), (b)$ \theta=0 $时, 霍尔电导$ \sigma_{xy} $和贝里偶极矩$ D_y $关于费米面$ E_{\mathrm{F}} $的依赖关系, 不同颜色的曲线对应不同的极角ϕ. (c), (d)霍尔电导$ \sigma_{xy} $和贝里偶极矩$ D_y $关于费米面$ E_{\mathrm{F}} $和极角ϕ的相图, 不同颜色分别表示霍尔电导和贝里偶极矩的强度

    Figure 2.  (a) The Hall conductance $ \sigma_{xy} $ and (b) Berry dipole moment $ D_y $ as functions of the Fermi surface $ E_{\mathrm{F}} $ when $ \theta=0 $, where different colors represent different polar angles ϕ. The phase diagrams of (c) the Hall conductance $ \sigma_{xy} $ and (d) the Berry dipole moment $ D_y $ as functions of the Fermi surface $ E_{\mathrm{F}} $ and polar angle ϕ, where different colors describe the strength of Hall conductance and Berry dipole moment, respectively.

    图 3  (a) 贝里偶极矩$ D_{x/y} $在$ \phi=0.2\pi $时随θ角的依赖关系; (b)—(d) 贝里偶极矩$ D_{x} $, $ D_{y} $和霍尔电导$ \sigma_{xy} $随着ϕθ角的依赖关系. 不同颜色分别表示$ D_x $, $ D_y $, 和$ \sigma_{xy} $的强度. 该图中固定费米面为$ E_{\mathrm{F}}=-0.5 $

    Figure 3.  (a) Numerically calculated Berry dipole moment $ D_{x/y} $ as functions of θ with$ \phi=0.2\pi $; (b)–(d) $ D_{x} $, $ D_{y} $, and $ \sigma_{xy} $ as functions of θ and ϕ, respectively. The colors describe the strength of $ D_x $, $ D_y $, and $ \sigma_{xy} $. We fix the Fermi surface as $ E_{\mathrm{F}}=-0.5 $ in the numerical calculations.

  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [4]

    Bernevig B A, Felser C, Beidenkopf H 2022 Nature 603 41Google Scholar

    [5]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [6]

    Liu J, Hesjedal T 2021 Adv. Mater. 35 2102427Google Scholar

    [7]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [8]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [9]

    Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390Google Scholar

    [10]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [11]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [12]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [13]

    Varnava N, Vanderbilt D 2018 Phys. Rev. B 98 245117Google Scholar

    [14]

    Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409Google Scholar

    [15]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [16]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [17]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [18]

    Lian Z, Wang Y, Wang Y, Dong W H, Feng Y, Dong Z, Ma M, Yang S, Xu L, Li Y, Fu B, Li Y, Jiang W, Xu Y, Liu C, Zhang J, Wang Y 2025 Nature 641 70Google Scholar

    [19]

    Zhu K, Cheng Y, Liao M, Chong S K, Zhang D, He K, Wang K L, Chang K, Deng P 2024 Nano Lett. 24 2181Google Scholar

    [20]

    Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744Google Scholar

    [21]

    Suárez-Rodríguez M, Juan F, Souza I, Gobbi M, Casanova F, Hueso L 2025 Nat. Mater. 24 1005Google Scholar

    [22]

    Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z 2024 Nat. Mater. 23 1179Google Scholar

    [23]

    Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G 2023 Phys. Rev. Lett. 131 256201Google Scholar

    [24]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [25]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [26]

    Shvetsov O O, Esin V D, Timonina A V, Kolesnikov N N, Deviatov E V 2019 JETP Lett. 109 715Google Scholar

    [27]

    Dzsaber S, Yan X, Taupin M, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q, Paschen S 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2013386118Google Scholar

    [28]

    Qin M S, Zhu P E, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, Liao Z M 2021 Chin. Phys. Lett. 38 017301Google Scholar

    [29]

    Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 Natl. Sci. Rev. 10 nwac232Google Scholar

    [30]

    Ho S C, Chang C H, Hsieh Y C, Lo S T, Huang B, Vu T H Y, Ortix C, Chen T M 2021 Nat. Electron. 4 116Google Scholar

    [31]

    Shen S Q 2017 Topological Insulators (Singapore: Springer) pp207–229

    [32]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107(RGoogle Scholar

    [33]

    Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar

    [34]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [35]

    Li R H, Heinonen O, Burkov A, Zhang S 2021 Phys. Rev. B 103 045105Google Scholar

    [36]

    Nandy S, Zeng C, Tewari S 2021 Phys. Rev. B 104 205124Google Scholar

    [37]

    Wang Y, Zhang Z, Zhu Z G, Su G 2024 Phys. Rev. B 109 085419Google Scholar

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] ZENG Ran, FANG Shichao, GAO Taiji, LI Haozhen, YANG Shuna, YANG Yaping. Casimir effect in photonic topological insulator multilayered system. Acta Physica Sinica, 2025, 74(10): 104202. doi: 10.7498/aps.74.20250088
    [3] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [4] Ba Jia-Yan, Chen Fu-Yang, Duan Hou-Jian, Deng Ming-Xun, Wang Rui-Qiang. Planar Hall effect in topological materials. Acta Physica Sinica, 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [5] Xie Xiang-Nan, Li Cheng, Zeng Jun-Wei, Zhou Shen, Jiang Tian. Research progress of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [6] Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui. Experimental progress of topological exciton insulators. Acta Physica Sinica, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [7] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [8] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [9] Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao. Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [10] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [11] Wei Bo-Yuan, Bu Hai-Jun, Zhang Shuai, Song Feng-Qi. Observation of planar Hall effect in topological semimetal ZrSiSe device. Acta Physica Sinica, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [12] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [13] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [14] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [15] Guan Tong, Teng Jing, Wu Ke-Hui, Li Yong-Qing. Linear magnetoresistance in topological insulator (Bi0.5Sb0.5)2Te3 thin films. Acta Physica Sinica, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [16] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [17] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [18] Zhang Xiao-Ming, Liu Guo-Dong, Du Yin, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng, Liu Zhong-Yuan. Investigation on regulating the topological electronic structure of the half-Heusler compound LaPtBi. Acta Physica Sinica, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
    [20] . Acta Physica Sinica, 2000, 49(2): 365-370. doi: 10.7498/aps.49.365
Metrics
  • Abstract views:  368
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  23 June 2025
  • Accepted Date:  24 July 2025
  • Available Online:  16 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回