Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Room-temperature Raman detection of all Davydov components of ${\mathrm{A}}_1' $ mode in transition metal dichalcogenides

LI Linhan MEI Rui LIU Xuelu LIN Miaoling TAN Pingheng

Citation:

Room-temperature Raman detection of all Davydov components of ${\mathrm{A}}_1' $ mode in transition metal dichalcogenides

LI Linhan, MEI Rui, LIU Xuelu, LIN Miaoling, TAN Pingheng
cstr: 32037.14.aps.74.20250960
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A comprehensive van der Waals heterostructure strategy has been implemented to be able to observe all Davydov components of the A-mode in few-layer transition-metal dichalcogenides (TMDs) at room temperature. In few-layer 2H-TMDs such as MoS2, MoSe2, and WS2, the A-mode phonon splits into N Davydov components that directly reflect the interlayer coupling strength and layer number. Under the resonance conditions near the band edge, however, strong photoluminescence (PL) and band filling effects severely obscure these Raman signals, particularly for infrared-active modes, rendering the observation of all the Davydov components at ambient temperature infeasible. In this work, few-layer (1–4 layers) TMD flakes are mechanically exfoliated and dry-transferred onto four-layer graphene, followed by high-vacuum annealing to improve the interfacial coupling quality. Ultralow-frequency Raman spectra of interlayer shear and breathing modes provide an unambiguous fingerprint for determining the layer numbers of both TMDs and graphene constituents, while differential reflectance spectra precisely determine the resonance energies of excitons.Under resonance excitation with the A-exciton, the heterostructures exhibit a marked enhancement of A-mode Raman intensity accompanied by strong PL quenching. Raman peaks associated with all the Davydov components are simultaneously resolved for MoS2, MoSe2, and WS2 at room temperature. The activation of all the Davydov components arises from three synergistic mechanisms: 1) symmetry breaking at the TMDs/graphene interface, which renders the forbidden components Raman-allowed; 2) interfacial charge transfer, which suppresses the PL background by depleting photoexcited carriers entering into graphene; and 3) efficient nonradiative relaxation pathways provided by graphene, which mitigates the band filling effect and restore resonant Raman scattering. Furthermore, the highest-frequency Davydov component A(1) exhibits an overall blue shift in the heterostructure relative to the intrinsic TMDs, with the magnitude of the shift decreasing as the layer number increases. This behavior can be explained by a diatomic linear-chain model in which interfacial van der Waals coupling enhances the force constants of intralayer vibrations.This work thus establishes a general platform for Raman analysis of all the Davydov components of the A mode in two-dimensional (2D) TMDs at room temperature and elucidates how interface coupling, layer number, and symmetry breaking jointly govern phonon behavior. The approach offers valuable insights into phonon engineering and interface design in 2D heterostructures and may readily be extended to relevant systems such as WSe2 and ReS2.
      Corresponding author: TAN Pingheng, phtan@semi.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFF0609800) and the National Natural Science Foundation of China (Grant Nos. 12127807, 12322401, 12393832).
    [1]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [2]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [3]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [4]

    Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L, Tan P H 2016 Phys. Rev. B 93 115409Google Scholar

    [5]

    Leng Y C, Lin M L, Zhou Y, Wu J B, Meng D, Cong X, Li H, Tan P H 2021 Nanoscale 13 9732Google Scholar

    [6]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113Google Scholar

    [7]

    Tan Q H, Sun Y J, Liu X L, Zhao Y, Xiong Q, Tan P H, Zhang J 2017 2D Mater. 4 031007Google Scholar

    [8]

    Kim S, Kim K, Lee J, Cheong H 2017 2D Mater. 4 045002

    [9]

    Tan P H 2019 Raman Spectroscopy of Two-Dimensional Materials (Singapore: Springer) pp203–227

    [10]

    张琼予, 崔旭伟, 董文龙, JARAPANYACHEEP Rapisa, 刘璐琪 2025 光散射学报 37 188Google Scholar

    Zhang Q Y, Cui X W, Dong W L, Jarapanyacheep R, Liu L Q 2025 Chin. J. Light Scatt. 37 188Google Scholar

    [11]

    蒋杰, 李聪慧, 姚森浩, 申珅, 冉娜, 张洁 2024 光散射学报 36 305Google Scholar

    Jiang J, Li C H, Yao S H, Shen S, Ran N, Zhang J 2024 Chin. J. Light Scatt. 36 305Google Scholar

    [12]

    Liu Y, Hu X, Wang T, Liu D 2019 ACS Nano 13 14416Google Scholar

    [13]

    Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L 2013 ACS Nano 7 1072Google Scholar

    [14]

    Mei R, Zhong Y G, Xie J L, Wu J B, Du W N, Zhang X H, Liu X F, Lin M L, Tan P H 2025 Laser Photonics Rev. e00821Google Scholar

    [15]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light Sci. Appl. 10 72Google Scholar

    [16]

    Li H, Wu J B, Ran F, Lin M L, Liu X L, Zhao Y, Lu X, Xiong Q, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar

    [17]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [18]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant H S, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [19]

    Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C, Tan P H 2013 Phys. Rev. B 87 115413Google Scholar

    [20]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294Google Scholar

    [21]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [22]

    Liang L, Zhang J, Sumpter B G, Tan Q H, Tan P H, Meunier V 2017 ACS Nano 11 11777Google Scholar

    [23]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T C, Asensio M C, Ouerghi A 2016 Nano Lett. 16 4054Google Scholar

    [24]

    Bieniek M, Szulakowska L, Hawrylak P 2020 Phys. Rev. B 101 125423Google Scholar

    [25]

    Robert C, Han B, Kapuscinski P, Delhomme A, Faugeras C, Amand T, Molas M R, Bartos M, Watanabe K, Taniguchi T, Urbaszek B, Potemski M, Marie X 2020 Nat. Commun. 11 4037Google Scholar

    [26]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [27]

    Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, De Vasconcellos S M, Bratschitsch R, Perez De Lara D, Rohlfing M, Castellanos-Gomez A 2018 Nanomaterials 8 725Google Scholar

    [28]

    Zhou K G, Withers F, Cao Y, Hu S, Yu G, Casiraghi C 2014 ACS Nano 8 9914Google Scholar

    [29]

    Tan Q H, Zhang X, Luo X D, Zhang J, Tan P H 2017 J. Semicond. 38 031006Google Scholar

  • 图 1  本征MoS2中A模的Davydov组分 (a) 1—4L TMDs中A模所有Davydov组分原子位移示意图; (b) 本征1—4LM的差分反射谱; (c) 本征1—4LM的低频模; (d) 本征1—4LM中A模的Davydov组分缺失

    Figure 1.  Davydov components of A-mode in intrinsic MoS2: (a) Schematic diagram of atomic displacements for all the Davydov components of A-mode in 1–4L TMDs; (b) differential reflectance spectra of intrinsic 1–4LM; (c) low-frequency modes of intrinsic 1–4LM; (d) failure to observe all the Davydov components of A-mode in intrinsic 1–4LM.

    图 2  MoS2/石墨烯异质结的层间耦合与拉曼增强机制 (a) 低频模: nLM/4LG vs. 本征nLM; (b) 高频模: nLM/4LG vs. 本征n LM; (c) PL谱: nLM/4LG vs. 本征nLM. 一阶拉曼增强机制 (d1), (d2) 1LM/4LG vs. 本征1LM; (e1), (e2) nLM/4LG vs. 本征nLM, $ n \geqslant 2 $

    Figure 2.  Interlayer coupling and Raman enhancement mechanism in MoS2/Gr heterostructures: (a) Low-frequency modes: nLM/4LG vs. intrinsic nLM; (b) high-frequency modes: nLM/4LG vs. intrinsic nLM; (c) PL spectra: nLM/4LG vs. intrinsic nLM. Mechanism of first-order Raman enhancement: (d1), (d2) 1LM/4LG vs. intrinsic 1LM; (e1), (e2) nLM/4LG vs. intrinsic nLM, $ n \geqslant 2 $.

    图 3  MoS2/石墨烯异质结中A模的Davydov组分 (a)—(d) 1—4LM/4LG的Davydov组分(室温); (e)—(h) 各组分峰强随激发光能量的变化(1—4LM/4LG)

    Figure 3.  Davydov components of A-mode in MoS2/Gr heterostructures: (a)–(d) Davydov components in 1–4LM/4LG (room temperature); (e)–(h) Excitation energy dependence of component peak intensities (1–4LM/4LG).

    图 4  异质结策略的跨材料普适性 (a)—(d) MoSe2体系与(e)—(h) WS2体系中的Davydov组分观测

    Figure 4.  Universality of heterostructure strategies. Observation of Davydov components in (a)–(d) MoSe2 system and (e)–(h) WS2 system

    图 5  A(1)模频率的层数依赖关系 (a)—(c) 本征nL MoS2, nL MoSe2, nL WS2样品中A(1)模频率随层数的变化(蓝色菱形); nL MoS2/4LG, nL MoSe2/4LG, nL WS2/4LG异质结样品中A(1)模频率随层数的变化(红色圆形)

    Figure 5.  Dependence of the Raman peak of A(1) mode on the number of layers (a)–(c) in intrinsic nL MoS2, nL MoSe2, nL WS2 (blue diamond) and in nL MoS2/4LG, nL MoSe2/4LG, nL WS2/4LG heterstructures (red dot).

  • [1]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [2]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [3]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [4]

    Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L, Tan P H 2016 Phys. Rev. B 93 115409Google Scholar

    [5]

    Leng Y C, Lin M L, Zhou Y, Wu J B, Meng D, Cong X, Li H, Tan P H 2021 Nanoscale 13 9732Google Scholar

    [6]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113Google Scholar

    [7]

    Tan Q H, Sun Y J, Liu X L, Zhao Y, Xiong Q, Tan P H, Zhang J 2017 2D Mater. 4 031007Google Scholar

    [8]

    Kim S, Kim K, Lee J, Cheong H 2017 2D Mater. 4 045002

    [9]

    Tan P H 2019 Raman Spectroscopy of Two-Dimensional Materials (Singapore: Springer) pp203–227

    [10]

    张琼予, 崔旭伟, 董文龙, JARAPANYACHEEP Rapisa, 刘璐琪 2025 光散射学报 37 188Google Scholar

    Zhang Q Y, Cui X W, Dong W L, Jarapanyacheep R, Liu L Q 2025 Chin. J. Light Scatt. 37 188Google Scholar

    [11]

    蒋杰, 李聪慧, 姚森浩, 申珅, 冉娜, 张洁 2024 光散射学报 36 305Google Scholar

    Jiang J, Li C H, Yao S H, Shen S, Ran N, Zhang J 2024 Chin. J. Light Scatt. 36 305Google Scholar

    [12]

    Liu Y, Hu X, Wang T, Liu D 2019 ACS Nano 13 14416Google Scholar

    [13]

    Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L 2013 ACS Nano 7 1072Google Scholar

    [14]

    Mei R, Zhong Y G, Xie J L, Wu J B, Du W N, Zhang X H, Liu X F, Lin M L, Tan P H 2025 Laser Photonics Rev. e00821Google Scholar

    [15]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light Sci. Appl. 10 72Google Scholar

    [16]

    Li H, Wu J B, Ran F, Lin M L, Liu X L, Zhao Y, Lu X, Xiong Q, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar

    [17]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [18]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant H S, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [19]

    Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C, Tan P H 2013 Phys. Rev. B 87 115413Google Scholar

    [20]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294Google Scholar

    [21]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [22]

    Liang L, Zhang J, Sumpter B G, Tan Q H, Tan P H, Meunier V 2017 ACS Nano 11 11777Google Scholar

    [23]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T C, Asensio M C, Ouerghi A 2016 Nano Lett. 16 4054Google Scholar

    [24]

    Bieniek M, Szulakowska L, Hawrylak P 2020 Phys. Rev. B 101 125423Google Scholar

    [25]

    Robert C, Han B, Kapuscinski P, Delhomme A, Faugeras C, Amand T, Molas M R, Bartos M, Watanabe K, Taniguchi T, Urbaszek B, Potemski M, Marie X 2020 Nat. Commun. 11 4037Google Scholar

    [26]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [27]

    Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, De Vasconcellos S M, Bratschitsch R, Perez De Lara D, Rohlfing M, Castellanos-Gomez A 2018 Nanomaterials 8 725Google Scholar

    [28]

    Zhou K G, Withers F, Cao Y, Hu S, Yu G, Casiraghi C 2014 ACS Nano 8 9914Google Scholar

    [29]

    Tan Q H, Zhang X, Luo X D, Zhang J, Tan P H 2017 J. Semicond. 38 031006Google Scholar

  • [1] YUAN Xiang, ZHANG Zifa, WANG Mingji, HE Danmin, LU Yingshen, HONG Feng, JIANG Zuimin, XU Run, WANG Yingmin, MA Zhongquan, SONG Hongwei, XU Fei. Dual-absorption-layer heterojunction strategy for enhancing photovoltaic performance of all-perovskite tandem solar cell. Acta Physica Sinica, 2025, 74(14): 148802. doi: 10.7498/aps.74.20250372
    [2] LI Chenkai, ZHU Jinlong. Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures. Acta Physica Sinica, 2025, 74(17): 176802. doi: 10.7498/aps.74.20250498
    [3] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [4] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [5] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [7] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [8] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] Liu Xiao-Hong, Jiang Shan, Chang Lin, Zhang Wei. Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates. Acta Physica Sinica, 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [10] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [11] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [12] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [13] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [14] Han Liang, Liu De-Lian, Chen Xian, Zhao Yu-Qing. The effect of the interlayer CrN on adhesion characteristics of ta-C films on high-speed steel substrate. Acta Physica Sinica, 2013, 62(9): 096802. doi: 10.7498/aps.62.096802
    [15] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [16] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [17] Wang Jing, Liu Gui-Chang, Ji Da-Peng, Xu Jun, Deng Xin-Lu. Diamond-like carbon (DLC) films deposited on copper substrate through preparation of intermediate layers. Acta Physica Sinica, 2006, 55(7): 3748-3755. doi: 10.7498/aps.55.3748
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Ni Jing, Cai Jian-Wang, Zhao Jian-Gao, Yan Shi- Shen, Mei Liang-Mo, Zhu Shi-Fu. The antiferromagnetic coupling and interface diffusion in Fe/Si multilayers. Acta Physica Sinica, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
  • supplement 20-20250960suppl.pdf supplement
Metrics
  • Abstract views:  615
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2025
  • Accepted Date:  21 August 2025
  • Available Online:  02 September 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回