-
Near-field thermophotovoltaic (NFTPV) devices enable direct and efficient conversion of thermal radiation into electricity, showing great potential in waste heat recovery and nanoscale energy systems. To enhance conversion efficiency, we propose an NFTPV system based on an hBN/BP/InSb heterostructure, where hexagonal boron nitride (hBN) serves as the emitter, black phosphorus (BP) acts as a tunable interlayer, and indium antimonide (InSb) functions as the photovoltaic cell. The anisotropic surface plasmon polaritons (SPPs) in BP strongly couple with the hyperbolic phonon polaritons (HPPs) in hBN, thereby forming hybrid surface modes that enhance photon tunneling and achieve effective spectral matching with the interband transition of InSb, leading to a substantial increase in near-field radiative heat transfer. Based on fluctuational electrodynamics and detailed balance analysis combined with the transfer matrix method, we systematically evaluated four structural configurations—InSb-hBN, InSb/BP-hBN, InSb-BP/hBN, and InSb/BP-BP/hBN—and examined the influence of vacuum gap distance and BP carrier density on device performance. Among them, the InSb/BP-hBN configuration exhibits the highest performance, with an output power density of 1.2×106 W/m2 and a conversion efficiency approaching 60% of the Carnot limit at a 10 nm gap and 900 K emitter temperature. Furthermore, theoretical analysis reveals that the spatial position of BP critically determines the photon tunneling probability, thereby governing variations in output power and efficiency among different configurations. As the free electron concentration increases from 5×1012 cm-2 to 5×1013 cm-2, the hybridization between SPPs and HPPs changes markedly, leading to distinct enhancement behaviors of radiative energy above and below the InSb bandgap. These findings clarify the mechanism by which SPPs-HPPs hybridization enhances NFTPV performance, offering new insights and design strategies for next-generation high-efficiency thermophotovoltaic devices.
-
Keywords:
- hexagonal boron nitride /
- black phosphorus /
- waste heat recovery /
- near-field thermophotovoltaic
-
[1] . Lu H Y, Price L, Zhang Q 2016 Appl. Energy 161 497
[2] . Yang Z Y, Yang X L, Liu Z Y, Xia J J 2025 Appl. Therm. Eng. 266 125594
[3] . Zhou Z G, Chen Q S, Bermel P 2015 Energy Convers. Manage. 97 63
[4] . Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1
[5] . Song J M, Choi M W, Yang Z M, Lee J C, Lee B J 2022 Appl. Phys. Lett. 121 163503
[6] . Lucchesi C, Cakiroglu D, Perez J-P, Taliercio T, Tournié E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524
[7] . LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287
[8] . Chen K F, Santhanam P, Fan S H 2015 Appl. Phys. Lett. 107 091106
[9] . Zhao B, Chen K F, Buddhiraju S, Bhatt G, Lipson M, Fan S H 2017 Nano Energy 41 344
[10] . Amy C, Seyf H R, Steiner M A, Friedman D J, Henry A 2019 Energy Environ. Sci. 12 334
[11] . Liao T J, Cai L, Zhao Y R, Chen J C 2016 J. Power Sources 306 666
[12] . Bierman D M, Lenert A, Chan W R, Bhatia B, Celanović I, Soljačić M, Wang E N 2016 Nat. Energy 1 16086
[13] . Wang C H, Bian H, Fan D W, Zhang P F, Liu J C 2025 Int. J. Heat Mass Transf. 236 126375
[14] . Mao W-H, Du Y Y, Peng J B, Ren J 2025 Adv. Photonics 7 036006
[15] . Lu L, Zhang B, Ou H, Li B W, Zhou K, Song J L, Luo Z X, Cheng Q 2022 Small 18 2108032
[16] . Liu X L, Zhang Z M 2015 Acs Photonics 2 1320
[17] . Biehs S-A, Messina R, Venkataram P S, Rodriguez A W, Cuevas J C, Ben-Abdallah P 2021 Rev. Mod. Phys. 93 025009
[18] . Polder D, Van Hove M 1971 Phys. Rev. B 4 3303
[19] . Burger T, Sempere C, Roy-Layinde B, Lenert A 2020 Joule 4 1660
[20] . Song J L, Cheng Q 2016 Phys. Rev. B 94 125419
[21] . Zhou C-L, Yang S H, Huang Y, Zhang Y, Yi H-L, Antezza M, Qiu C-W 2025 Nanophotonics 14 4045
[22] . Shi K Z, Bao F L, He S L 2017 Acs Photonics 4 971
[23] . Zhang Y, Zhou C-L, Qu L, Yi H-L 2020 Appl. Phys. Lett. 116 151101
[24] . Ma Q J, Xiong Q S, Chen X, Jiang L Y, Xiang Y J 2024 Opt. Lett. 49 2701
[25] . Xu Z G, Hu Z F 2024 J. Therm. Sci. 33 1409
[26] . Wang R Q, Lu J C, Wu X H, Peng J B, Jiang J-H 2023 Phys. Rev. Appl. 19 044050
[27] . Chen F R, Xu Z G, Wang Y T 2021 Int. J. Therm. Sci. 166 106978
[28] . Du W, Yin G, Ma Y-G 2020 Acta Phys. Sin. 69 204203 (in Chinese) [杜玮, 尹格, 马云贵 2020 物理学报69 204203]
[29] . Li L, Yu K, Feng D D, Yang Z M, Zhang K H, Liu Y F, Wu X H 2023 Phys. Rev. Appl. 20 064015
[30] . Zhang K, Zhang B, Luo Z X, Song J L, Cheng Q 2025 Int. J. Heat Mass Transf. 236 126288
[31] . Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182
[32] . Zhang Y, Yi H-L, Tan H-P 2018 Acs Photonics 5 3739
[33] . Wang R Q, Lu J C, Jiang J-H 2019 Phys. Rev. Appl. 12 044038
[34] . Shen J D, Guo S, Liu X L, Liu B A, Wu W T, He H 2018 Appl. Therm. Eng. 144 403
[35] . Zhao B, Zhang Z M 2017 J. Heat Transfer 139 022701
[36] . Low T, Roldán R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802
[37] . Yang S-H, Zhang Y, Zhou C-L, Yi H-L 2021 Int. J. Therm. Sci. 170 107142
[38] . Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383
[39] . Feng D D, Ruan X L, Yee S K, Zhang Z M 2022 Nano Energy 103 107831
[40] . Zhang Y, Wang C-H, Yi H-L, Tan H-P 2018 J. Quant. Spectrosc. Radiat. Transfer 221 138
[41] . Wu X H, Fu C J, Zhang Z M 2019 J. Photo. Energy. 9 032702
[42] . Feng D D, Tervo E J, Yee S K, Zhang Z M 2020 Nanoscale Microscale Thermophys. Eng. 24 1
[43] . Li L, Wu X H, Liu H T, Yang Z M, Liu Y F, Yu K 2024 Int. J. Heat Mass Transf. 230 125783
Metrics
- Abstract views: 34
- PDF Downloads: 1
- Cited By: 0









下载: