搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调石墨烯超表面的宽角度动态波束控制

李小兵 陆卫兵 刘震国 陈昊

引用本文:
Citation:

基于可调石墨烯超表面的宽角度动态波束控制

李小兵, 陆卫兵, 刘震国, 陈昊

Dynamic beam-steering in wide angle range based on tunable graphene metasurface

Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao
PDF
导出引用
  • 可调控超表面可用于动态控制空间波束的方向,具有很高的应用价值.石墨烯是一种可调的二维材料,它的电导率可以通过外加电压控制,利用这一特性可设计基于石墨烯的可调控超表面.超表面控制反射波束时的理论依据是广义的斯涅耳反射定律.反射角度可通过沿超表面的相位梯度进行控制.但是这种方法有局限性,当超表面单元固定时,反射角度只能取有限个离散的值.本文设计了基于石墨烯的可调超表面,并采用一种基于卷积运算定理的波束控制方法,实现了反射波角度的大范围动态控制.在1.75 THz垂直入射平面波激励下,反射角度可以从5变化到70,间隔小于10.数值模拟结果与理论计算结果一致.
    Metasurfaces, the two-dimensional counterparts of metamaterials composed of subwavelength building blocks, can be used to control the amplitude, phase, and polarization of the scattered wave in a simple but effective way and thus have a wide range of applications such as lenses, holograms, and beam steering. Among these applications, metasurfacebased beam steering is of great importance for antenna engineering in communication systems, because of its low loss and easy manufacture. The capability of beam steering is mainly controlled by the phase profile which is determined by the phase shift applied to the wave scattered by each of unit cells that constitute the metasurface. It should be noted that the required phase profile achieved by distributing the unit cells with different phase responses can operate well only at a certain frequency. The guidance in determining the required phase profile to steer the beam into a certain direction is the generalized Snell's law. According to this law, the reflection angle of the wave reflected by the metasurface interface depends on the linear phase gradient along the metasurface. Therefore, by forming different linear phase gradients covering the whole phase shift 2 periodically, one can steer the reflected waves to different angles. However, the obtained reflection angles are limited because the phase gradient of a metasurface is limited by the unit cell size, which cannot be infinitely small. Recently, a new pattern shift theory based on the convolution theorem has been proposed to realize wide angle range steering, enabling flexible and continuous manipulation of reflection angle. Because the electric field distribution and the scattering pattern in the far-field region are a Fourier transform pair, we can pattern the electric field of the metasurface to control the scattered waves of far field. Specifically, the multiplication of an electric distribution by a gradient phase sequence leads to a deviation of the scattering pattern from its original direction to a certain extent in the angular coordinate. However, we have not considered the tunability of metasurfaces so far, which is required in applications. The ways to reach tunability in metasurface include diode switches, micro-electro-mechanical system, and the use of tunable materials such as graphene. Graphene, an atomically thin layer of carbon atoms arranged in a honeycomb lattice, has aroused the enormous interest due to its outstanding mechanical, thermal, and electrical properties. With the capability of being electrically tunable, graphene has manifested itself as a promising candidate for designing the tunable metasurfaces. Although the reflection angle can be changed by electrically reconfiguring the graphene Fermi level distribution of the metasurface, the steering angle is still limited. In this paper, we propose and design a tunable graphene metasurface with the capability of dynamically steering the reflection angle in a wide range, which is achieved based on the new pattern shift theory. The theoretical results and the numerically simulated results both show that the reflection angle can be steered from 5 to 70 with an interval less than 10, implying the promising potential in the design of tunable antenna.
      通信作者: 陆卫兵, wblu@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61671150,61671147)和江苏省六大人才高峰计划(批准号:XCL-004)资助的课题.
      Corresponding author: Lu Wei-Bing, wblu@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671150, 61671147) and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. XCL-004).
    [1]

    Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. M. 54 10

    [2]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139

    [3]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [4]

    Liu C, Hum S V 2010 IEEE Antenn. Wirel. Pr. 9 1241

    [5]

    Geim K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [7]

    Novoselov K S 2004 Science 306 666

    [8]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Wang Z P, Deng Y, Sun L F 2017 Chin. Phys. B 26 114101

    [11]

    Jiang J L, Zhang X, Zhang W, Liang S, Wu H, Jiang L Y, Li X Y 2017 Opt. Express 25 16867

    [12]

    Liu L M, Zarate Y, Hattori H T, Neshev D N, Shadrivov I V, Powell D A 2016 Appl. Phys. Lett. 108 031106

    [13]

    Liu Z, Bai B F 2017 Opt. Express 25 8584

    [14]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [15]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [16]

    Yatooshi T, Ishikawa A, Tsuruta K 2015 Appl. Phys. Lett. 107 053105

    [17]

    Wang J, Lu W B, Li X B, Liu J L 2016 IEEE Photon. Tech. Lett. 28 971

    [18]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [19]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [20]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [21]

    Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G, Polini M 2013 Nat. Commun. 4 1987

    [22]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805

    [23]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B S, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [24]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [25]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi S Y, Choi C G, Zhang X, Min B K 2012 Nat. Mater. 11 936

    [26]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628

    [27]

    Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438

    [28]

    Vasko F T, Ryzhii V 2007 Phys. Rev. B 76 233404

    [29]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

  • [1]

    Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. M. 54 10

    [2]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139

    [3]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [4]

    Liu C, Hum S V 2010 IEEE Antenn. Wirel. Pr. 9 1241

    [5]

    Geim K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [7]

    Novoselov K S 2004 Science 306 666

    [8]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Wang Z P, Deng Y, Sun L F 2017 Chin. Phys. B 26 114101

    [11]

    Jiang J L, Zhang X, Zhang W, Liang S, Wu H, Jiang L Y, Li X Y 2017 Opt. Express 25 16867

    [12]

    Liu L M, Zarate Y, Hattori H T, Neshev D N, Shadrivov I V, Powell D A 2016 Appl. Phys. Lett. 108 031106

    [13]

    Liu Z, Bai B F 2017 Opt. Express 25 8584

    [14]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [15]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [16]

    Yatooshi T, Ishikawa A, Tsuruta K 2015 Appl. Phys. Lett. 107 053105

    [17]

    Wang J, Lu W B, Li X B, Liu J L 2016 IEEE Photon. Tech. Lett. 28 971

    [18]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [19]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [20]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [21]

    Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G, Polini M 2013 Nat. Commun. 4 1987

    [22]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805

    [23]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B S, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [24]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [25]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi S Y, Choi C G, Zhang X, Min B K 2012 Nat. Mater. 11 936

    [26]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628

    [27]

    Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438

    [28]

    Vasko F T, Ryzhii V 2007 Phys. Rev. B 76 233404

    [29]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

  • [1] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [2] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究. 物理学报, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [3] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [6] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [7] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [8] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [9] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [11] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [14] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [18] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [19] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [20] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
计量
  • 文章访问数:  5462
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-06-04
  • 刊出日期:  2019-09-20

/

返回文章
返回