搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性

颜佳豪 陈思璇 杨建斌 董敬敬

引用本文:
Citation:

吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性

颜佳豪, 陈思璇, 杨建斌, 董敬敬

Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping

Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing
PDF
HTML
导出引用
  • 近年来, 有机无机杂化钙钛矿太阳能电池光电转换效率不断提升, 成为了太阳能电池领域的研究热点. 但是, 有机阳离子甲胺离子(CH3NH${}_3^+ $, MA+)和甲脒离子(CH(NH2)${}_2^+ $, FA+)在水、氧等环境因素作用下极其不稳定, 从而大大阻碍了有机无机杂化钙钛矿太阳能电池的商业应用. 因此, 如何提升其稳定性成为了目前亟待解决的难题. 本文借助离子掺杂工艺, Cl 掺杂、FA+ 掺杂以及 Cl, FA+共掺, 对传统 MAPbI3 钙钛矿吸收层材料进行改进, 以提升其稳定性. 结果发现, Cl 掺杂有利于提升器件载流子迁移能力, FA+ 掺杂可以拓宽吸光范围, Cl, FA+ 共掺可以促进 α 相钙钛矿的结晶, 从而得到高质量的钙钛矿薄膜. 基于 Cl, FA+ 共掺的 FAyMA1–yPbI3–xClx钙钛矿薄膜, 在空气中制备出了最高光电转换效率为17.29%的器件, 该器件在空气中储存1000h后, 仍可保持80%的原始效率.
    ABX3 crystalline perovskite material has many advantages: good photoelectric absorption property, high charge carrier mobility, good film formation, long charge carrier lifetime, and easy bandgap adjustment for absorption layer of perovskite solar cells. As a result, the power conversion efficiency (PCE) of the organic-inorganic halide perovskite solar cells (PSCs) has taken a tremendous step forward, from 3.9% in 2009 to a recently reported value over 25.5%. Thus, it shows great potential to compete with traditional silicon solar cells. However, PSCs preparing conditions are harsh and susceptible to environmental influences, thus leading to instability. Therefore, it is essential to prepare high-performance and stable PSCs in an air environment. This study aims to use the ion doping method to improve the performance and stability of PSCs and analyze the mechanism. This work focuses on enhancing PSCs efficiency and stability by performing FA+ and Cl doping experiments on MAPbI3 films in air. The results show that a single Cl-doping increases the carrier diffusion length, reducing the recombination of electrons and holes, and inducing the perovskite intermediate hydrate (CH3NH3)4PbI6·2H2O to form, promoting the crystallization of the thin film, and improving the device performance. On the other hand, a single FA+-doping will reduce the bandgap of perovskite and increase the short-circuit current density (JSC) of the device, and FA+ is susceptible to the influence of water vapor to induce a yellow δ-FAPbI3 perovskite film to form, which leads the device performance to degrade. However, the prepared co-doping Cl, FA+ significantly improves overall PSCs device performance, yielding the highest PCE of 17.29%, and showing excellent stability by maintaining over 80% of the original PCE without any encapsulation after 1000-hour storage in ambient air.
      通信作者: 董敬敬, jjdong@cugb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11404293)和中央高校基本科研业务费专项资金(批准号: 2652019121)资助的课题
      Corresponding author: Dong Jing-Jing, jjdong@cugb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404293) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2652019121)
    [1]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Sang I S 2015 Nature 517 476Google Scholar

    [2]

    Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 ACS Appl. Mater. Interfaces 10 7145Google Scholar

    [3]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [4]

    Jeon N J, Na H, Jung E H, Yang T Y, Seo J 2018 Nat. Energy 3 682Google Scholar

    [5]

    D'Innocenzo V, Grancini G, Alcocer M, Kandada A, Petrozza A 2014 Nat. Commun. 5 3586Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [7]

    Michael M L, Joel T, Tsutomu M, Takurou N M, Henry J S 2012 Science 338 643Google Scholar

    [8]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    NREL, National Renewable Energy Laboratory. Best Research-Cell Efficiencies, 2021. https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv-rev210726.pdf.

    [10]

    Nenon D P, Christians J A, Wheeler L M, et al. 2016 Energy Environ. Sci. 9 2072Google Scholar

    [11]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [12]

    Wu J, Dong J J, Chen S X, Hao H Y, Xing J, Liu H 2018 Nanoscale Res. Lett. 13 293Google Scholar

    [13]

    Niu Q, Deng Y, Cui D, Lv H, Min Y 2019 J. Mater. Sci. 54 22Google Scholar

    [14]

    Chen S, Dong J, Wu J, Hou S, Hao H 2019 Sol. Energy Mater. Sol. Cells 201 110110Google Scholar

    [15]

    Wang C, Long Y, Liu X, Fu S, Wang J, Zhang J, Hu Z, Zhu Y 2020 J. Mater. Chem. C 8 48

    [16]

    Xiang Y, Ma Z, Zhuang J, Lu H, Jia C, Luo J, Li H, Cheng X 2017 J. Phys. Chem. C 121 37Google Scholar

    [17]

    Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z, Ren Y, Xin J 2017 Electrochim. Acta 247 460Google Scholar

    [18]

    Xu Y Z, Zhu L F, Shi J J, Xu X, Xiao J Y 2016 Chemphyschem 17 112Google Scholar

    [19]

    Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S 2018 Nat. Commun. 9 1607Google Scholar

    [20]

    李晓娥, 陈秀娟, 张淼, 祖庸 1995 稀有金属材料与工程 24 65Google Scholar

    Li X E, Chen X J, Zhang M, Zu Y 1995 Rare Met. Mater. Eng. 24 65Google Scholar

    [21]

    Isikgor F, Li B, Zhu H, Xu Q H, Ouyang J 2016 J. Mater. Chem. A 4 12543Google Scholar

    [22]

    Mu C, Pan J, Feng S, Li Q, Xu D 2017 Adv. Energy Mater. 7 1601297Google Scholar

    [23]

    Xie F, Chen C C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L 2017 Energy Environ. Sci. 10 1942Google Scholar

    [24]

    Lee Y M, Yun J H, Matsuyama A, et al. 2019 Appl. Phys. Express 12 051003Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Dong S K 2019 Joule 3 2179Google Scholar

    [26]

    Liu Z, Shi T, Tang Z, Bo S, Liao G 2016 Nanoscale 8 7017Google Scholar

    [27]

    Luo J, Jia C, Wan Z, Han F, Zhao B, Wang R 2017 J. Power Sources 342 886Google Scholar

    [28]

    Peng J, Wu Y L, Ye W, et al. 2017 Energy Environ. Sci. 10 1792Google Scholar

  • 图 1  基于FTO衬底上不同掺杂条件下钙钛矿薄膜的XRD图谱

    Fig. 1.  XRD patterns of perovskite films under different doping conditions on FTO substrates.

    图 2  不同掺杂条件下钙钛矿薄膜的XPS图谱 (a)XPS全谱图; (b)−(f)分别对应于C 1s, Pb 4f, I 3d, N 1s以及O 1s的精细图谱

    Fig. 2.  XPS spectra of perovskite films under different doping conditions: (a) XPS full spectrum; (b)−(f) correspond to the fine spectrum of C 1s, Pb 4f, I 3d, N 1s, and O 1s, respectively.

    图 3  基于FAyMA1–yPbI3薄膜和FAyMA1–yPbI3–xClx薄膜C 1s光谱的分峰拟合图谱

    Fig. 3.  The XPS peak fitting pattern of C 1s spectra of FAyMA1–yPbI3 film and FAyMA1–yPbI3–xClx film.

    图 4  不同掺杂条件下钙钛矿薄膜的SEM表面图像 (a) MAPbI3薄膜; (b) MAPbI3–xClx薄膜; (c) FAyMA1–yPbI3薄膜; (d) FAyMA1–yPbI3–xClx薄膜

    Fig. 4.  SEM surface image of perovskite film under different doping conditions: (a) MAPbI3 film; (b) MAPbI3–xClx film; (c) FAyMA1–yPbI3 film; (d) FAyMA1–yPbI3–xClx film.

    图 5  不同掺杂条件下钙钛矿薄膜的UV-vis光谱图

    Fig. 5.  UV-vis spectra of perovskite films under different doping conditions.

    图 6  不同掺杂条件下钙钛矿薄膜的 (a) 稳态PL光谱图和(b) TRPL光谱图(插图中的表格为具体参数)

    Fig. 6.  (a) Steady-state PL spectrum and (b) TRPL spectrum of perovskite films under different doping conditions (the table in the illustration shows the specific parameters).

    图 7  (a) 不同掺杂条件下钙钛矿薄膜PSC的J-V曲线; (b)基于MAPbI3薄膜与FAyMA1–yPbI3–xClx薄膜制备的最优器件的EQE图谱

    Fig. 7.  (a) J-V curve of perovskite film PSC under different doping conditions; (b) EQE spectrum of the optimal device prepared based on MAPbI3 film and FAyMA1–yPbI3–xClx film.

    图 8  基于MAPbI3薄膜与FAyMA1–yPbI3–xClx薄膜制备的最优器件的(a)最大功率点稳态输出图和(b)正反扫J-V曲线测试

    Fig. 8.  (a) Steady-state photocurrent and PCE outputs at a voltage close to the maximum output point (b) J-V curves under reverse and forward scanning of the optimal device prepared based on MAPbI3 film and FAyMA1–yPbI3–xClx film.

    图 9  基于MAPbI3薄膜与FAyMA1–yPbI3–xClx薄膜制备的最优器件的(a)瞬态VOC光谱图和(b)空气中的稳定性

    Fig. 9.  (a) Transient VOC spectrogram and (b) optimal device stability in the air prepared based on MAPbI3 film and FAyMA1–yPbI3–xClx film.

    表 1  不同掺杂条件下钙钛矿薄膜PSCs的光伏参数

    Table 1.  Photovoltaic parameters of perovskite film PSCs under different doping conditions.

    器件薄膜种类开路电压短路电流填充因子功率转换效率
    VOC/VJSC/(mA·cm–2)FF/%PCE/%
    MAPbI31.0420.1660.3312.94
    MAPbI3–xClx1.0822.8862.9015.67
    FAyMA1–yPbI31.0417.9153.9111.10
    FAyMA1–y PbI3–xClx1.0723.6768.5217.29
    下载: 导出CSV

    表 2  不同掺杂条件下钙钛矿薄膜PSCs的光伏参数

    Table 2.  Photovoltaic parameters of perovskite film PSCs under different doping conditions.

    组分含量/(mg·mL–1) 开路电压短路电流填充因子功率转换效率
    PbI2MAIFAIMAClVOC/VJSC/(mA·cm–2)FF/%PCE/%
    1.4 mol/L7000 1.0420.1660.3312.94
    63071.0822.8862.9015.67
    560141.0521.7961.5314.08
    214900.9815.4047.507.17
    284201.0417.9153.9111.10
    353501.0417.3556.2110.24
    253871.0723.6768.5217.29
    2234141.0621.3465.0714.72
    下载: 导出CSV
  • [1]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Sang I S 2015 Nature 517 476Google Scholar

    [2]

    Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 ACS Appl. Mater. Interfaces 10 7145Google Scholar

    [3]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [4]

    Jeon N J, Na H, Jung E H, Yang T Y, Seo J 2018 Nat. Energy 3 682Google Scholar

    [5]

    D'Innocenzo V, Grancini G, Alcocer M, Kandada A, Petrozza A 2014 Nat. Commun. 5 3586Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [7]

    Michael M L, Joel T, Tsutomu M, Takurou N M, Henry J S 2012 Science 338 643Google Scholar

    [8]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    NREL, National Renewable Energy Laboratory. Best Research-Cell Efficiencies, 2021. https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv-rev210726.pdf.

    [10]

    Nenon D P, Christians J A, Wheeler L M, et al. 2016 Energy Environ. Sci. 9 2072Google Scholar

    [11]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [12]

    Wu J, Dong J J, Chen S X, Hao H Y, Xing J, Liu H 2018 Nanoscale Res. Lett. 13 293Google Scholar

    [13]

    Niu Q, Deng Y, Cui D, Lv H, Min Y 2019 J. Mater. Sci. 54 22Google Scholar

    [14]

    Chen S, Dong J, Wu J, Hou S, Hao H 2019 Sol. Energy Mater. Sol. Cells 201 110110Google Scholar

    [15]

    Wang C, Long Y, Liu X, Fu S, Wang J, Zhang J, Hu Z, Zhu Y 2020 J. Mater. Chem. C 8 48

    [16]

    Xiang Y, Ma Z, Zhuang J, Lu H, Jia C, Luo J, Li H, Cheng X 2017 J. Phys. Chem. C 121 37Google Scholar

    [17]

    Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z, Ren Y, Xin J 2017 Electrochim. Acta 247 460Google Scholar

    [18]

    Xu Y Z, Zhu L F, Shi J J, Xu X, Xiao J Y 2016 Chemphyschem 17 112Google Scholar

    [19]

    Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S 2018 Nat. Commun. 9 1607Google Scholar

    [20]

    李晓娥, 陈秀娟, 张淼, 祖庸 1995 稀有金属材料与工程 24 65Google Scholar

    Li X E, Chen X J, Zhang M, Zu Y 1995 Rare Met. Mater. Eng. 24 65Google Scholar

    [21]

    Isikgor F, Li B, Zhu H, Xu Q H, Ouyang J 2016 J. Mater. Chem. A 4 12543Google Scholar

    [22]

    Mu C, Pan J, Feng S, Li Q, Xu D 2017 Adv. Energy Mater. 7 1601297Google Scholar

    [23]

    Xie F, Chen C C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L 2017 Energy Environ. Sci. 10 1942Google Scholar

    [24]

    Lee Y M, Yun J H, Matsuyama A, et al. 2019 Appl. Phys. Express 12 051003Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Dong S K 2019 Joule 3 2179Google Scholar

    [26]

    Liu Z, Shi T, Tang Z, Bo S, Liao G 2016 Nanoscale 8 7017Google Scholar

    [27]

    Luo J, Jia C, Wan Z, Han F, Zhao B, Wang R 2017 J. Power Sources 342 886Google Scholar

    [28]

    Peng J, Wu Y L, Ye W, et al. 2017 Energy Environ. Sci. 10 1792Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [9] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [10] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [11] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [14] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [15] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [16] 刘晓敏, 李亦回, 王兴涛, 赵一新. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿. 物理学报, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [20] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
计量
  • 文章访问数:  3957
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-02
  • 修回日期:  2021-06-16
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回