-
高温超导薄膜因其微波表面电阻低,可用于尖端高温超导微波器件的制作。然而由于高温超导材料特殊的二维超导机制和极短的超导相干长度,高温超导材料的微波表面电阻对微结构特别敏感。为了探究高温超导材料微结构和微波电阻的联系,采用脉冲激光沉积(PLD)技术在(00l)取向的MgO单晶衬底上生长了不同厚度的YBa2Cu3O7-δ(YBCO)薄膜。电学测量发现不同厚度的样品超导转变温度、常温电阻差别不大,但超导态的微波表面电阻差异很大。同步辐射三维倒空间扫描(3D-RSM)技术对YBCO薄膜微结构的表征表明:CuO2面平行于表面晶粒(c晶)的多寡、晶粒取向的一致性是造成超导态微波表面电阻差异的主要原因。High-temperature superconducting films can be used for the fabrication of cutting-edge high-temperature superconducting microwave devices because of their low microwave surface resistance. However, the microwave surface resistance of high-temperature superconducting materials is particularly sensitive to microstructure due to their special two-dimensional superconducting mechanism and extremely short superconducting coherence length. To investigate the correlation between microstructure and microwave surface resistance of high-temperature superconducting materials, YBa2Cu3O7-δ (YBCO) films with different thicknesses were grown on (00l)-oriented MgO single-crystal substrates using pulsed laser deposition (PLD) technique. Electrical measurements revealed that their superconducting transition temperature and room temperature resistance do not show significant difference. However, their microwave surface resistance at superconducting state display a significant difference. The characterization of the microstructure of YBCO films by synchrotron radiation three-dimensional reciprocal space mapping(3D-RSM) technique shows that the number of the grains with CuO2 face parallel to the surface (c crystals), and the consistency of grain orientation are the main causes for the difference in microwave surface resistance.
-
[1] Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37(7) 607-609
[2] Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77(10) 5481-5483
[3] Zhu S N, Zhu Y Y, Ming N B 1997 Science 278(5339) 843-846
[4] Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113(10) 103601.
[5] Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nature Photonics 12(10) 596-600
[6] Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nature Photonics 12(10) 591-595
[7] Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nature Communications 10(1) 1-7
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 43284-87
[9] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 301705171
[10] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58908
[11] Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 06412-414(in Chinese)[赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清1987科学通报06412-414]
[12] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 411863-1877
[13] Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 431125-1151
[14] Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6631-642
[15] Obradors X, Puig T 2014 Supercond. Sci. Technol. 27044003
[16] Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414368-377
[17] Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64827-841(in Chinese)[蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明,郭艳群,白传易,陆齐,豆文芝2018科学通报64827-841]
[18] Newman N, Lyons W G 1993 J. Supercond. 6119-160
[19] Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42767-792(in Chinese)[孙亮,黎红,张雪强,李春光,张强,王佳,边勇波,何豫生2012中国科学:物理学力学天文学42767-792]
[20] Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470(15) 617-621
[21] He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469(21) 1925-1929
[22] Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280167-177
[23] ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 Journal of FuntionalMaterials ans Devices 13(4) 301-305(in Chinese)[邹春梅,左长明,路胜博,催旭梅,姬洪2007功能材料与器件学报13(4) 301-305]
[24] Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42-S45
[25] Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 173553
[26] Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 753692
[27] Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 236601205
[28] Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 801601
[29] Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Physical Review B 46(18) 11902-11913
[30] Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19(9) 2674-2682
[31] Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys.:Condens. Matter 19076203
[32] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D:Appl. Phys. 41165405
[33] Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 20360-67
[34] Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14(12) 16823-16831
[35] Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68(6) 423-433
[36] Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10(24) 14419-14450
[37] Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40(2) 178-180
[38] Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56(9) 930-933
[39] Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Frontiers in Plant Science 11479
[40] Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 255561
[41] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326977.
[42] Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84094116
[43] Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S,Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21133
[44] Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88064103
[45] Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 2269.
[46] Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50395
[47] Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70174109
[48] Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans'l R 2009 Physica Status Solidi A 2061771
[49] Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18413
[50] Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19688
[51] Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H,Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104182901
[52] Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adcances 9205114
[53] Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108152905
[54] Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Scientific Reports 44591
[55] Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59(4) 531-536
[56] Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44(3) 247-251
[57] Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffraction 23
计量
- 文章访问数: 188
- PDF下载量: 5
- 被引次数: 0