搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳能电池中S形伏安特性研究

石将建 卫会云 朱立峰 许信 徐余颛 吕松涛 吴会觉 罗艳红 李冬梅 孟庆波

引用本文:
Citation:

钙钛矿太阳能电池中S形伏安特性研究

石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波

S-shaped current-voltage characteristics in perovskite solar cell

Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo
PDF
导出引用
  • 本文从理论模拟和实验角度研究了钙钛矿太阳能电池的伏安特性, 并着重探讨了由于界面电荷输运受限而产生的S形特征. 理论模拟表明, 当电池界面电荷输运速度逐渐降低时, 出现界面电荷积累, 影响电池输出性能. 实验研究表明, 当电池的背接触, 光阳极等界面电荷输运速度受限时, 即出现S形伏安特性, 降低电池效率. 然而, 由于电子和空穴在界面输运性质方面的差异, 以及电池中可能存在的独特的界面能带结构, 不同界面电荷输运受限而产生的S形伏安曲线又各具特征, 与电池内部实际的电荷分布以及输运方向有关. 本文的研究结果有助于阐明钙钛矿太阳能电池中存在的影响电荷输运的界面因素, 进而为界面设计和界面优化提供理论依据.
    Analysis of the DC current-voltage (I-V) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments, limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells, the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features, which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to and carefully designed. This work directly shows the interface factors that can significantly affect the cell performance, and gives a theoretical guide in cell design. By considering these limiting factors, the cell fabrication has been carefully designed with the control on the thickness of the mesoporous layer and the perovskite absorber film deposition, and a forward-swept efficiency of 15.5% can be achieved without any modification of the cell.
    • 基金项目: 北京市科委项目(批准号: Z131100006013003)、国家重点基础研究发展计划(批准号: 2012CB932903)和国家自然科学基金(批准号: 51372270, 51372272, 11474333, 21173260, 91233202, 91433205, 51421002) 资助的课题.
    • Funds: Project supported by the Beijing Science and Technology Committee (Grant No. Z131100006013003), the National Key Basic Research Program (Grant No. 2012CB932903), and the National Natural Science Foundation of China (Grant Nos. 51372270, 51372272, 11474333, 21173260, 91233202, 91433205, 51421002).
    [1]

    Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)

    [2]

    Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]

    [3]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)

    [4]

    Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155

    [5]

    Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [6]

    Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Liu M, Johnston B, Snaith H J 2013 Nature 501 395

    [9]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [10]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [11]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927

    [12]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897

    [13]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [14]

    Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [15]

    Liu D, Kelly T L 2014 Nat. Photon. 8 133

    [16]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [17]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [18]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [19]

    Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [22]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [23]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711

    [24]

    Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309

    [25]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

  • [1]

    Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)

    [2]

    Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]

    [3]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)

    [4]

    Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155

    [5]

    Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [6]

    Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Liu M, Johnston B, Snaith H J 2013 Nature 501 395

    [9]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [10]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [11]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927

    [12]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897

    [13]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [14]

    Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [15]

    Liu D, Kelly T L 2014 Nat. Photon. 8 133

    [16]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [17]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [18]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [19]

    Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [22]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [23]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711

    [24]

    Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309

    [25]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新. 聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性. 物理学报, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
计量
  • 文章访问数:  10595
  • PDF下载量:  2561
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-23
  • 修回日期:  2014-11-24
  • 刊出日期:  2015-02-05

/

返回文章
返回