搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究

熊开欣 席昆 鲍磊 张忠良 谭志杰

引用本文:
Citation:

脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究

熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰

Molecular dynamics simulations on DNA flexibility: a comparative study of Amber bsc1 and bsc0 force fields

Xiong Kai-Xin, Xi Kun, Bao Lei, Zhang Zhong-Liang, Tan Zhi-Jie
PDF
导出引用
  • 脱氧核糖核酸(DNA)的结构柔性对DNA生物功能的实现具有重要作用,全原子分子动力学模拟是一种研究DNA结构柔性的重要方法.DNA的分子动力学力场在Amber bsc0基础上有了进一步的发展,即Amber bsc1.本文采用基于最新bsc1力场和先前bsc0力场的分子动力学模拟对DNA的宏观柔性和微观柔性进行对比研究,发现力场的改进对DNA宏观柔性参量的预测有一定改善,即所预测的拉伸模量和扭转-伸缩耦合比与实验值更为接近,而弯曲持久长度和扭转持久长度两种力场结果皆与实验值一致.微观分析发现,除了滑移量稍变大,bsc1力场得到的微观结构参量如扭转角和倾斜角与实验值更为接近,且新力场下DNA宏观柔性的改善与DNA的微观结构参量及其涨落紧密相关.
    The structural flexibility of DNA plays a key role in many biological processes of DNA, such as protein-DNA interactions, DNA packaging in viruses and nucleosome positioning on genomic DNA. Some experimental techniques have been employed to investigate the structural flexibility of DNA with the combination of elastic models, but these experiments could only provide the macroscopic properties of DNA, and thus, it is still difficult to understand the corresponding microscopic mechanisms. Recently, all-atom molecular dynamics (MD) simulation has emerged as a useful tool to investigate not only the macroscopic properties of DNA, but also the microscopic description of the flexibility of DNA at an atomic level. The most important issue in all-atom MD simulations of DNA is to choose an appropriate force field for simulating DNA. Very recently, a new force field for DNA has been developed based on the last generation force field of Amber bsc0, which was named Amber bsc1. In this work, all-atom MD simulations are employed to study the flexibility of a 30-bp DNA with the force fields of Amber bsc1 and Amber bsc0 in a comparative way. Our aim of the research is to examine the improvement of the new development of force field (Amber bsc1) in the macroscopic and microscopic properties of DNA, in comparison with the corresponding experimental measurements. All the MD simulations are performed with Gromacs 4.6 and lasted with a simulation time of 600 ns. The MD trajectories are analyzed with Curves+ for the last 500 ns, since the system reaches equilibrium approximately after ~100 ns. Our results show that the new force field (Amber bsc1) can lead to the improvements in the macroscopic parameters of DNA flexibility, i.e., stretch modulus S and twist-stretch coupling D become closer to experimental measurements, while bending persistence lengths lp and torsional persistence lengths C from the two force fields (bsc1 and bsc0) are both in good agreement with experimental data. Our microscopic analyses show that the microscopic structure parameters of DNA from the MD simulation with the Amber bsc1 force field are closer to the experimental values than those with the Amber bsc0 force field, except for slide, and the obvious improvements are observed in some microscopic parameters such as twist and inclination. Our further analyses show that the improvements in macroscopic flexibility from the Amber bsc1 force field are tightly related to the microscopic parameters and their fluctuations. This study would be helpful in understanding the performances of Amber bsc1 and bsc0 force fields in the description of DNA flexibility at both macroscopic and microscopic level.
    [1]

    Peters J P, Maher L J 2010 Q. Rev. Biophys. 43 23

    [2]

    Bao L, Zhang X, Jin L, Tan Z J 2015 Chin. Phys. B 24 018703

    [3]

    Lionnet T, Joubaud S, Lavery R, Bensimon D, Croquette V 2006 Phys. Rev. Lett. 96 178102

    [4]

    Forth S, Sheinin M Y, Inman J, Wang M D 2013 Ann. Rev. Biophys. 42 583

    [5]

    Zhang Z L, Wu Y Y, Xi K, Sang J P, Tan Z J 2017 Biophys. J. 113 517

    [6]

    Richmond T J, Davey C A 2003 Nature 423 145

    [7]

    Noll M 1977 J. Mol. Biol. 116 49

    [8]

    Felsenfeld G, Boyes J, Chung J H, Clark D J, Studitsky V M 1996 Proc. Natl. Acad. Sci. USA 93 9384

    [9]

    Li W, Wang P Y, Yan J, Li M 2012 Phys. Rev. Lett. 109 218102

    [10]

    Xiao S Y, Zhu H, Wang L, Liang H J 2014 Soft Matter 10 1045

    [11]

    Xiao S Y, Liang H J 2012 J. Chem. Phys. 136 205102

    [12]

    Bryant Z, Stone M D, Gore J, Smith S B, Cozzarelli N R, Bustamante C 2003 Nature 424 338

    [13]

    Wu Y Y, Bao L, Zhang X, Tan Z J 2015 J. Chem. Phys. 142 125103

    [14]

    Wang F H, Wu Y Y, Tan Z J 2013 Biopolymers 99 370

    [15]

    Kratky O, Porod G 2010 Rel. Trav. Chim. Pays-Bas. 68 1106

    [16]

    Noy A, Golestanian R 2012 Phys. Rev. Lett. 109 228101

    [17]

    Zhang X H, Chen H, Fu H X, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [18]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [19]

    Zhang X, Bao L, Wu Y Y, Zhu X L, Tan Z J 2017 J. Chem. Phys. 147 054901

    [20]

    Travers A A 2004 Phil. Trans. R. Soc. Lond. A 362 1423

    [21]

    Tan Z J, Chen S J 2008 Biophys. J. 94 3137

    [22]

    Zhou H J, Zhang Y, Ouyang Z C 1998 Phys. Rev. Lett. 82 4560

    [23]

    Zhou H, Zhang Y, Ouyang Z C 2000 Phys. Rev. E 62 1045

    [24]

    Gore J, Bryant Z, Nöllmann M, Le M U, Cozzarelli N R, Bustamante C 2006 Nature 442 836

    [25]

    Moroz J D, Nelson P C 1997 Proc. Natl. Acad. Sci. USA 94 14418

    [26]

    Marko J F 1998 Phys. Rev. E 57 2134

    [27]

    Bao L, Zhang X, Shi Y Z, Wu Y Y, Tan Z J 2017 Biophys. J. 112 1094

    [28]

    Mazur A K, Maaloum M 2014 Phys. Rev. Lett. 112 068104

    [29]

    Abels J A, Moreno-Herrero F, van der Heiden T, Dekker C, Dekker N H 2005 Biophys. J. 88 2737

    [30]

    Yuan C, Chen H, Lou X W, Archer L A 2008 Phys. Rev. Lett. 100 018102

    [31]

    Mathew-Fenn R S, Das R, Harbury P A B 2008 Science 322 446

    [32]

    Mastroianni A J, Sivak D A, Geissler P L, Alivisatos A P 2009 Biophys. J. 97 1408

    [33]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [34]

    Wang X L, Zhang X H, Cao M, Zheng H Z, Xiao B, Wang Y, Li M 2009 J. Phys. Chem. B 113 2328

    [35]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kober M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [36]

    Herrero-Galán E, Fuentes-Perez M E, Carrasco C, Valpuesta J M, Carrascosa J L, Moreno-Herrero F, Arias-Gonzalez J R 2013 J. Am. Chem. Soc. 135 122

    [37]

    Lipfert J, Kerssemakers J W, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [38]

    Baumann C G, Smith S B, Bloomfield V A, Bustamante C 1997 Proc. Natl. Acad. Sci. USA 94 6185

    [39]

    Zhang X H, Qu Y Y, Chen H, Rouzina I, Zhang S L, Doyle P S, Yan J 2014 J. Am. Chem. Soc. 136 16073

    [40]

    Orozco M, Noy A, Pérez A 2008 Curr. Opin. Struct. Biol. 18 185

    [41]

    Wang Y, Gong S, Wang Z, Zhang W 2016 J. Chem. Phys. 144 115101

    [42]

    Qi W P, Lei X L, Fang H P 2010 ChemPhysChem 11 2146

    [43]

    Qi W P, Song B, Lei X L, Wang C L, Fang H P 2011 Biochemistry 50 9628

    [44]

    Yin Y D, Yang L J, Zheng G Q, Gu C, Yi C Q, He C, Gao Y Q, Zhao X S 2014 Proc. Natl. Acad. Sci. USA 111 8043

    [45]

    Gu C, Zhang J, Yang Y I, Chen X, Ge H, Sun Y, Su X, Yang L, Xie S, Gao Y Q 2015 J. Phys. Chem. B 119 13980

    [46]

    Lankaš F,Šponer J, Langowski J, Iii T E C 2003 Biophys. J. 85 2872

    [47]

    Perez A, Lankas F, Luque F J, Orozco M 2008 Nucleic Acids Res. 36 2379

    [48]

    Zuo G, Li W, Zhang J, Wang J, Wang W 2010 J. Phys. Chem. B 114 5835

    [49]

    Zhang Y J, Zhang J, Wang W 2011 J. Am. Chem. Soc. 133 6882

    [50]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 25

    [51]

    Wang J, Zhao Y, Wang J, Xiao Y 2015 Phys. Rev. E 92 062705

    [52]

    Wang J, Xiao Y 2016 Phys. Rev. E 94 040401

    [53]

    Wu Y Y, Zhang Z L, Zhang J S, Zhu X L, Tan Z J 2015 Nucleic Acids Res. 43 6156

    [54]

    Galindomurillo R, Robertson J, Zgarbová M,Šponer J, Otyepka M, Jurečka P, Iii T E C 2016 J. Chem. Theory Comput. 12 4114

    [55]

    Cheatham T E, Young M A 2000 Biopolymers 56 232

    [56]

    Fujii S, Kono H, Takenaka S, Go N, Sarai A 2007 Nucleic Acids. Res. 35 6063

    [57]

    Zhang Y, Zhou H J, Ouyang Z C 2001 Biophys. J. 81 1133

    [58]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157

    [59]

    Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A 2015 J. Am. Chem. Soc. 117 5179

    [60]

    Ivani I, Dans P D, Noy A, Perez A, Faustino I, Hospital A, Walther J, Andrio P, Goni R, Balaceanu A, Portella G, Battistini F, Gelpi J L, Gonzalez C, Vendruscolo M, Laughton C A, Harris S A, Case D A, Orozco M 2016 Nat. Methods 13 55

    [61]

    Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B, Woods R J 2010 J. Comput. Chem. 26 1668

    [62]

    Joung I S 2008 J. Phys. Chem. B 112 9020

    [63]

    Tan Z J, Chen S J 2006 Biophys. J. 90 1175

    [64]

    Tan Z J, Chen S J 2007 Biophys. J. 92 3615

    [65]

    Shi Y Z, Wang F H, Wu Y Y, Tan Z J 2014 J. Chem. Phys. 141 2654

    [66]

    Shi Y Z, Jin L, Wang F H, Zhu X L, Tan Z J 2015 Biophys. J. 109 2654

    [67]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [68]

    Pérez A, Marchán I, Svozil D, Sponer J, Rd C T, Laughton C A, Orozco M 2007 Biophys. J. 92 3817

    [69]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [70]

    Martonák R, Laio A, Parrinello M 2003 Phys. Rev. Lett. 90 075503

    [71]

    Gunsteren W F V, Berendsen H J C 1988 Mol. Simulat. 1 173

    [72]

    Lavery R, Moakher M, Maddocks J H, Petkeviciute D, Zakrzewska K 2009 Nucleic Acids. Res. 37 5917

    [73]

    Mazur A K 2006 Biophys. J. 91 4507

    [74]

    Faustino I, Pérez A, Orozco M 2010 Biophys. J. 99 1876

    [75]

    Lavery R, Sklenar H 1989 J. Biomol. Struct. Dyn. 6 655

    [76]

    Forth S, Deufel C, Sheinin M Y, Daniels B, Sethna J P, Wang M D 2008 Phys. Rev. Lett. 100 148301

    [77]

    Manning G S 2006 Biophys. J. 91 3607

    [78]

    Wenner J R, Williams M C, Rouzina I, Bloomfield V A 2002 Biophys. J. 82 3160

    [79]

    Moroz J D, Nelson P 1997 Macromolecules 31 6333

    [80]

    Drew H R, Wing R M, Takano T, Broka C, Tanaka S, Itakura K, Dickerson R E 1981 Proc. Natl. Acad. Sci. USA 78 2179

    [81]

    Wu Z R, Delaglio F, Tjandra N, Zhurkin V B, Bax A 2003 J. Biomol. NMR 26 297

    [82]

    Noy A, Perez A, Lankas F, Javier Luque F, Orozco M 2004 J. Mol. Biol. 343 627

    [83]

    Ma N, van der Vaart A 2016 J. Am. Chem. Soc. 138 9951

  • [1]

    Peters J P, Maher L J 2010 Q. Rev. Biophys. 43 23

    [2]

    Bao L, Zhang X, Jin L, Tan Z J 2015 Chin. Phys. B 24 018703

    [3]

    Lionnet T, Joubaud S, Lavery R, Bensimon D, Croquette V 2006 Phys. Rev. Lett. 96 178102

    [4]

    Forth S, Sheinin M Y, Inman J, Wang M D 2013 Ann. Rev. Biophys. 42 583

    [5]

    Zhang Z L, Wu Y Y, Xi K, Sang J P, Tan Z J 2017 Biophys. J. 113 517

    [6]

    Richmond T J, Davey C A 2003 Nature 423 145

    [7]

    Noll M 1977 J. Mol. Biol. 116 49

    [8]

    Felsenfeld G, Boyes J, Chung J H, Clark D J, Studitsky V M 1996 Proc. Natl. Acad. Sci. USA 93 9384

    [9]

    Li W, Wang P Y, Yan J, Li M 2012 Phys. Rev. Lett. 109 218102

    [10]

    Xiao S Y, Zhu H, Wang L, Liang H J 2014 Soft Matter 10 1045

    [11]

    Xiao S Y, Liang H J 2012 J. Chem. Phys. 136 205102

    [12]

    Bryant Z, Stone M D, Gore J, Smith S B, Cozzarelli N R, Bustamante C 2003 Nature 424 338

    [13]

    Wu Y Y, Bao L, Zhang X, Tan Z J 2015 J. Chem. Phys. 142 125103

    [14]

    Wang F H, Wu Y Y, Tan Z J 2013 Biopolymers 99 370

    [15]

    Kratky O, Porod G 2010 Rel. Trav. Chim. Pays-Bas. 68 1106

    [16]

    Noy A, Golestanian R 2012 Phys. Rev. Lett. 109 228101

    [17]

    Zhang X H, Chen H, Fu H X, Doyle P S, Yan J 2012 Proc. Natl. Acad. Sci. USA 109 8103

    [18]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [19]

    Zhang X, Bao L, Wu Y Y, Zhu X L, Tan Z J 2017 J. Chem. Phys. 147 054901

    [20]

    Travers A A 2004 Phil. Trans. R. Soc. Lond. A 362 1423

    [21]

    Tan Z J, Chen S J 2008 Biophys. J. 94 3137

    [22]

    Zhou H J, Zhang Y, Ouyang Z C 1998 Phys. Rev. Lett. 82 4560

    [23]

    Zhou H, Zhang Y, Ouyang Z C 2000 Phys. Rev. E 62 1045

    [24]

    Gore J, Bryant Z, Nöllmann M, Le M U, Cozzarelli N R, Bustamante C 2006 Nature 442 836

    [25]

    Moroz J D, Nelson P C 1997 Proc. Natl. Acad. Sci. USA 94 14418

    [26]

    Marko J F 1998 Phys. Rev. E 57 2134

    [27]

    Bao L, Zhang X, Shi Y Z, Wu Y Y, Tan Z J 2017 Biophys. J. 112 1094

    [28]

    Mazur A K, Maaloum M 2014 Phys. Rev. Lett. 112 068104

    [29]

    Abels J A, Moreno-Herrero F, van der Heiden T, Dekker C, Dekker N H 2005 Biophys. J. 88 2737

    [30]

    Yuan C, Chen H, Lou X W, Archer L A 2008 Phys. Rev. Lett. 100 018102

    [31]

    Mathew-Fenn R S, Das R, Harbury P A B 2008 Science 322 446

    [32]

    Mastroianni A J, Sivak D A, Geissler P L, Alivisatos A P 2009 Biophys. J. 97 1408

    [33]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795

    [34]

    Wang X L, Zhang X H, Cao M, Zheng H Z, Xiao B, Wang Y, Li M 2009 J. Phys. Chem. B 113 2328

    [35]

    Lipfert J, Skinner G M, Keegstra J M, Hensgens T, Jager T, Dulin D, Kober M, Yu Z, Donkers S P, Chou F C, Das R, Dekker N H 2014 Proc. Natl. Acad. Sci. USA 111 15408

    [36]

    Herrero-Galán E, Fuentes-Perez M E, Carrasco C, Valpuesta J M, Carrascosa J L, Moreno-Herrero F, Arias-Gonzalez J R 2013 J. Am. Chem. Soc. 135 122

    [37]

    Lipfert J, Kerssemakers J W, Jager T, Dekker N H 2010 Nat. Methods 7 977

    [38]

    Baumann C G, Smith S B, Bloomfield V A, Bustamante C 1997 Proc. Natl. Acad. Sci. USA 94 6185

    [39]

    Zhang X H, Qu Y Y, Chen H, Rouzina I, Zhang S L, Doyle P S, Yan J 2014 J. Am. Chem. Soc. 136 16073

    [40]

    Orozco M, Noy A, Pérez A 2008 Curr. Opin. Struct. Biol. 18 185

    [41]

    Wang Y, Gong S, Wang Z, Zhang W 2016 J. Chem. Phys. 144 115101

    [42]

    Qi W P, Lei X L, Fang H P 2010 ChemPhysChem 11 2146

    [43]

    Qi W P, Song B, Lei X L, Wang C L, Fang H P 2011 Biochemistry 50 9628

    [44]

    Yin Y D, Yang L J, Zheng G Q, Gu C, Yi C Q, He C, Gao Y Q, Zhao X S 2014 Proc. Natl. Acad. Sci. USA 111 8043

    [45]

    Gu C, Zhang J, Yang Y I, Chen X, Ge H, Sun Y, Su X, Yang L, Xie S, Gao Y Q 2015 J. Phys. Chem. B 119 13980

    [46]

    Lankaš F,Šponer J, Langowski J, Iii T E C 2003 Biophys. J. 85 2872

    [47]

    Perez A, Lankas F, Luque F J, Orozco M 2008 Nucleic Acids Res. 36 2379

    [48]

    Zuo G, Li W, Zhang J, Wang J, Wang W 2010 J. Phys. Chem. B 114 5835

    [49]

    Zhang Y J, Zhang J, Wang W 2011 J. Am. Chem. Soc. 133 6882

    [50]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 25

    [51]

    Wang J, Zhao Y, Wang J, Xiao Y 2015 Phys. Rev. E 92 062705

    [52]

    Wang J, Xiao Y 2016 Phys. Rev. E 94 040401

    [53]

    Wu Y Y, Zhang Z L, Zhang J S, Zhu X L, Tan Z J 2015 Nucleic Acids Res. 43 6156

    [54]

    Galindomurillo R, Robertson J, Zgarbová M,Šponer J, Otyepka M, Jurečka P, Iii T E C 2016 J. Chem. Theory Comput. 12 4114

    [55]

    Cheatham T E, Young M A 2000 Biopolymers 56 232

    [56]

    Fujii S, Kono H, Takenaka S, Go N, Sarai A 2007 Nucleic Acids. Res. 35 6063

    [57]

    Zhang Y, Zhou H J, Ouyang Z C 2001 Biophys. J. 81 1133

    [58]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157

    [59]

    Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A 2015 J. Am. Chem. Soc. 117 5179

    [60]

    Ivani I, Dans P D, Noy A, Perez A, Faustino I, Hospital A, Walther J, Andrio P, Goni R, Balaceanu A, Portella G, Battistini F, Gelpi J L, Gonzalez C, Vendruscolo M, Laughton C A, Harris S A, Case D A, Orozco M 2016 Nat. Methods 13 55

    [61]

    Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B, Woods R J 2010 J. Comput. Chem. 26 1668

    [62]

    Joung I S 2008 J. Phys. Chem. B 112 9020

    [63]

    Tan Z J, Chen S J 2006 Biophys. J. 90 1175

    [64]

    Tan Z J, Chen S J 2007 Biophys. J. 92 3615

    [65]

    Shi Y Z, Wang F H, Wu Y Y, Tan Z J 2014 J. Chem. Phys. 141 2654

    [66]

    Shi Y Z, Jin L, Wang F H, Zhu X L, Tan Z J 2015 Biophys. J. 109 2654

    [67]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [68]

    Pérez A, Marchán I, Svozil D, Sponer J, Rd C T, Laughton C A, Orozco M 2007 Biophys. J. 92 3817

    [69]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [70]

    Martonák R, Laio A, Parrinello M 2003 Phys. Rev. Lett. 90 075503

    [71]

    Gunsteren W F V, Berendsen H J C 1988 Mol. Simulat. 1 173

    [72]

    Lavery R, Moakher M, Maddocks J H, Petkeviciute D, Zakrzewska K 2009 Nucleic Acids. Res. 37 5917

    [73]

    Mazur A K 2006 Biophys. J. 91 4507

    [74]

    Faustino I, Pérez A, Orozco M 2010 Biophys. J. 99 1876

    [75]

    Lavery R, Sklenar H 1989 J. Biomol. Struct. Dyn. 6 655

    [76]

    Forth S, Deufel C, Sheinin M Y, Daniels B, Sethna J P, Wang M D 2008 Phys. Rev. Lett. 100 148301

    [77]

    Manning G S 2006 Biophys. J. 91 3607

    [78]

    Wenner J R, Williams M C, Rouzina I, Bloomfield V A 2002 Biophys. J. 82 3160

    [79]

    Moroz J D, Nelson P 1997 Macromolecules 31 6333

    [80]

    Drew H R, Wing R M, Takano T, Broka C, Tanaka S, Itakura K, Dickerson R E 1981 Proc. Natl. Acad. Sci. USA 78 2179

    [81]

    Wu Z R, Delaglio F, Tjandra N, Zhurkin V B, Bax A 2003 J. Biomol. NMR 26 297

    [82]

    Noy A, Perez A, Lankas F, Javier Luque F, Orozco M 2004 J. Mol. Biol. 343 627

    [83]

    Ma N, van der Vaart A 2016 J. Am. Chem. Soc. 138 9951

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [8] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [9] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动. 物理学报, 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [10] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [11] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [12] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [13] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [16] 江绍钏, 章林溪, 夏阿根, 陈宏平. 脱氧核糖核酸单链序列的预测. 物理学报, 2010, 59(6): 4337-4342. doi: 10.7498/aps.59.4337
    [17] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究. 物理学报, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
计量
  • 文章访问数:  8382
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-12
  • 修回日期:  2018-03-09
  • 刊出日期:  2019-05-20

/

返回文章
返回