搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄介质插层调制的氧化铟锡/锗肖特基光电探测器

赵一默 黄志伟 彭仁苗 徐鹏鹏 吴强 毛亦琛 余春雨 黄巍 汪建元 陈松岩 李成

引用本文:
Citation:

超薄介质插层调制的氧化铟锡/锗肖特基光电探测器

赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成

Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation

Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng
PDF
HTML
导出引用
  • 本文通过在氧化铟锡(indium tin oxide, ITO)透明电极和锗(germanium, Ge)之间引入超薄氧化物介质层以调节其接触势垒高度, 制备出低暗电流、高响应度的锗肖特基光电探测器. 比较研究了采用不同种类介质Al2O3和MoO3, 以及不同掺杂浓度的锗和硅衬底上外延锗材料制作的ITO/Ge肖特基二极管特性. 发现2 nm厚的Al2O3插层可有效提高ITO与n-Ge和i-Ge的接触势垒高度, 而MoO3插层对ITO与不同Ge材料的接触势垒高度影响不明显. ITO/Al2O3/i-Ge探测器由于其增大的势垒高度表现出性能最佳, 暗电流(–4 V)密度低至5.91 mA/cm2, 1310 nm波长处光响应度高达4.11 A/W. 而基于硅基外延锗(500 nm)材料制作的ITO/Al2O3/Ge-epi光电探测器的暗电流(–4 V)密度为226.70 mA/cm2, 1310 nm处光响应度为0.38 A/W. 最后, 使用二维位移平台对ITO/Al2O3/i-Ge光电探测器进行了单点成像实验, 在1310 nm, 1550 nm两个波段得到了清晰可辨的二维成像图.
    Germanium (Ge) photodetectorhas been considered as one of the promising optoelectronic devices for optoelectronic integration. So far, most of reported Ge photodetectors with bulk Ge show high dark currents and low responsivities. In this paper, ultra-thin dielectric interlayer-modulated indium tin oxid (ITO)/Ge Schottky photodetectors with high responsivities and low dark currents are investigated, in which the ultra-thin dielectric interlayers are deposited through atomic layer deposition. The characteristics of ITO/Al2O3 (or MoO3)/Ge Schottky photodiodes fabricated on bulk Ge wafers with various doping concentrations and Ge epilayer on silicon substrates are comparatively studied. It is found that the 2-nm-thick Al2O3 intercalation between ITO transparent electrode and Ge can effectively enhance the Schottky barrier heights of the photodetectors and trap holes at interface states, rendering their dark currents low and responsivities high. The effective Schottky barrier heights increase from 0.34 eV (ITO/i-Ge) to 0.55 eV (ITO/Al2O3/i-Ge), and from 0.24 eV (ITO/n-Ge) to 0.56 eV (ITO/Al2O3/n-Ge). While MoO3 intercalation between ITO and Ge has no significant effect on the characteristics of all of the photodetectors due to its large electron affinity. The best performance is realized on the ITO/Al2O3/i-Ge photodetector with a low dark current of 5.91 mA/cm–2 at –4 V, sharply dropping by two orders of magnitude, compared with that of the ITO/i-Ge photodetector without the Al2O3 interlayer, and the responsivity is significantly improved to 4.11 A/W at 1310 nm. The ITO/Al2O3/epi-Ge photodetector fabricated on 500 nm Ge epilayer on a silicon substrate also shows the improved performance with a dark current density of 226.70 mA/cm2 at –3 V and a responsivity of 0.38 A/W at 1310 nm, compared with ITO/epi-Ge photodetector. Finally, experiment studies of single-point infrared images at 1310 nm and 1550 nm are carried out with the ITO/Al2O3/i-Ge photodetector on a two-dimensional XY displacement platform, which contains 25 pixels and a total detection size of 1750 μm × 1750 μm. The clear and distinguishable images of the infrared spot position are obtained. Consequently, these results suggest that the dielectric interlayer- modulated Schottky photodetectors are competitive in low power consumption and high responsivity, and have great potential applications in the civil field of short wave infrared imaging.
      通信作者: 李成, lich@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62074134)资助的课题
      Corresponding author: Li Cheng, lich@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074134)
    [1]

    Vivien L, Rouvière M, Fédéli J M, Marris-Morini D, Damlencourt J F, Mangeney J, Crozat P, Melhaoui L E, Cassan E, Le Roux X, Pascal D, Laval S 2007 Opt. Express 15 9843Google Scholar

    [2]

    Eng P C, Song S, Ping B 2015 Nanophotonics-Berlin 4 277Google Scholar

    [3]

    Soref R 1993 P. IEEE 81 1687Google Scholar

    [4]

    Soref R 2010 Nat. Photonics 4 495Google Scholar

    [5]

    Eng P C, Song S, Ping B 2010 Nat. Photonics 4 527Google Scholar

    [6]

    Wang J A, Lee S 2011 Sensors 11 696Google Scholar

    [7]

    Ahn D, Hong C Y, Liu F, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J, Kartner F X 2007 Opt. Express 15 3916Google Scholar

    [8]

    Kumar S, Chatterjee A, Selvaraja S K, Avasthi S 2020 IEEE Sens. J. 20 4660Google Scholar

    [9]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 1 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin-Phys. Mech. Astron. 1 15

    [10]

    Rogalski A 2003 Prog. Quant. Electron 27 59Google Scholar

    [11]

    Yu C Y, Huang Z W, Lin G Y, Mao Y C, Hong H Y, Zhang L, Zhao Y M, Wang J Y, Huang W, Chen S Y, Li C 2020 J. Phys. D 53 125103Google Scholar

    [12]

    Cui J S, Li T T, Yang F H, Cui W J, Chen H M 2021 Opt. Commun. 480 126467Google Scholar

    [13]

    Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252Google Scholar

    [14]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zhen J, Zuo Y H, Xue C L, Cheng B W 2020 Chinese Phys. Lett. 37 038503Google Scholar

    [15]

    Fama S, Colace L, Masini G, Assanto G, Luan H C 2002 Appl. Phys. Lett. 81 586Google Scholar

    [16]

    Liu J F, Michel J, Giziewicz W, Pan D, Wada K, Cannon D D, Jongthammanurak S, Danielson D T, Kimerling L C, Chen J, Ilday F O, Kartner F X, Yasaitis J 2005 Appl. Phys. Lett. 87 103501Google Scholar

    [17]

    Huang Z H, Kong N, Guo X Y, Liu M G, Duan N, Beck A L, Banerjee S K, Campbell J C 2006 IEEE J. Sel. Top. Quantum Electron. 12 1450Google Scholar

    [18]

    Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C 2009 Nat. Photonics 3 59Google Scholar

    [19]

    Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B, Shen D Z 2010 J. Phys. Chem. C 114 7169Google Scholar

    [20]

    Yu J, Shan C X, Qiao Q, Xie X H, Wang S P, Zhang Z Z, Shen D Z 2012 Sensors 12 1280Google Scholar

    [21]

    Huang Z W, Yu C Y, Chang A L, Zhao Y M, Huang W, Chen S Y, Li C 2020 J. Mater. Sci. 55 8630Google Scholar

    [22]

    Mazur M, Pastuszek R, Wojcieszak D, Kaczmarek D, Lubanska A https://www.emerald.com/insight/content/doi/10.1108/CW-11-2019-0170/full/html [2020-12-07]

    [23]

    Huang Z W, Mao Y C, Lin G Y, Yi X H, Chang A L, Li C, Chen S Y, Huang W, Wang J Y 2018 Opt. Express 26 5827Google Scholar

    [24]

    Assefa S, Fengnian X, Vlasov Y A 2010 In Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Los Angeles, CA USA, March 21−25, 2010 p1

    [25]

    Feng N N, Dong P, Zheng D W, Liao S R, Liang H, Shafiiha R, Feng D Z, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96Google Scholar

    [26]

    DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R, Davids P S 2011 Opt. Express 19 24897Google Scholar

    [27]

    Harris N C, Baehr-Jones T, Lim A E J, Liow T Y, Lo G Q, Hochberg M 2013 J. Lightwave Technol. 31 23Google Scholar

    [28]

    Chen H T, Verheyen P, De Heyn P, Lepage G, De Coster J, Absil P, Roelkens G, Van Campenhout J 2015 J. Lightwave Technol. 33 820Google Scholar

    [29]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [30]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773Google Scholar

    [31]

    Manik P P, Lodha S 2015 Appl. Phys. Express 8 051302Google Scholar

    [32]

    Robertson j 2000 J. Vac. Sci. Technol. B 18 1785Google Scholar

    [33]

    Zheng S, Yang W, Sun Q Q, Chen L, Zhou P, Wang P F, Zhang D W, Xiao F 2013 Appl. Phys. Lett. 103 261602

    [34]

    Irfan I, Turinske A J, Bao Z N, Gao Y L 2012 Appl. Phys. Lett. 101 093305Google Scholar

    [35]

    韩百超, 高明, 陈东运, 宋文磊, 宋晓敏, 徐飞, 赵磊, 马忠权, 张志恒, 莫镜辉 2017 第一届全国功能薄膜与涂层学术研讨会暨国际论坛 中国昆明 2017-07-23 p2

    Han B C, Gao M, Chen D Y, Song W L, Song X M, Xu F, Zhao L, Ma Z Q, Zhang Z H, Mo J H 2017 Summary of the First National Symposium on Functional Films and Coatings and International Forums Kun Ming, China, July 23, 2017 p2 (in Chinese)

  • 图 1  10 µm × 10 µm原子力显微镜图 (a) 本征锗表面; (b) MoO3(2 nm)/i-Ge; (c) Al2O3(2 nm)/i-Ge; (d) ITO/介质层/Ge光电探测器结构示意图

    Fig. 1.  AFM images with a scanned area of 10 µm × 10 µm: (a) Bare i-Ge; (b) MoO3 (2 nm)/i-Ge; (c) Al2O3(2 nm)/i-Ge; (d) schematic illustration of the ITO/dielectric-layer/Ge photodetector.

    图 2  探测器在不同激光功率(1310 nm)照射下的I-V曲线与暗电流曲线对比 (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi

    Fig. 2.  Photocurrent and darkcurrent of the detectors measured under illumination by a 1310 nm laser at different powers: (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi.

    图 3  探测器在偏压为–1, –2, –3, –4 V、不同激光功率(1310 nm)照射下的响应度变化曲线 (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi

    Fig. 3.  Responsivities of the photodetectors measured at –1, –2, –3 and –4 V reverse bias under illumination by a 1310 nm laser at various powers: (a) ITO/Al2O3/n-Ge; (b)ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi.

    图 4  (a) ITO/Al2O3/i-Ge变温I-V曲线; (b) i-Ge组器件ln(J/T 2)与1/(kT)拟合结果; (c) n-Ge组器件ln(J/T 2)与1/(kT)拟合结果; (d) Ge-epi组器件ln(J/T 2)与1/(kT)拟合结果

    Fig. 4.  (a) Temperature dependent I-V characteristics of ITO/Al2O3/i-Ge detector; (b) ln(J/T 2) versus 1/(kT) for i-Ge detectors; (c) ln(J/T 2) versus 1/(kT) for n-Ge detectors; (d) ln(J/T 2) versus 1/(kT) for Ge-epi detectors.

    图 5  有效肖特基势垒高度与器件类型关系图

    Fig. 5.  Diagram of effective Schottky barrier heights with device types.

    图 6  光照下探测器的能带结构图以及载流子输运示意图 (a) ITO/i-Ge; (b) ITO/Al2O3/i-Ge; (c) ITO/MoO3/n-Ge

    Fig. 6.  Energy band and carrier transport diagram of detectors under light illumination: (a) ITO/i-Ge; (b) ITO/Al2O3/i-Ge; (c) ITO/MoO3/n-Ge.

    图 7  ITO/Al2O3/i-Ge二维成像图 (a) 1310 nm波长; (b) 1550 nm波长

    Fig. 7.  Two dimensional image obtained from the ITO/Al2O3/i-Ge detector: (a) 1310 nm laser; (b) 1550 nm laser.

    表 1  超薄介质插层调制的ITO/Ge肖特基光电探测器与文献报道的器件性能对比

    Table 1.  A comparison of the performance of our works with those from other groups.

    年份暗电流大小(密度)响应度结构类型文献
    200640 mA/cm2@1 V0.28 A/W@1550 nmNI PIN[17]
    201090 μA@1 V0.14 A/W@1550 nmWG MSM[24]
    20100.2 mA@–0.5 V0.7 A/W@1550 nmWG PIN[25]
    201140 mA/cm2@1 V0.8 A/W@1500 nmWG Photodiode[26]
    2013412 μA@5 V1.76 A/W@1550 nmWG MSM[27]
    20153 nA@–1 V1.0 A/W@1567 nmWG PIN[28]
    201775 mA/cm2@1 V0.58 A/W@1550 nmWG PIN[29]
    20215.91 mA/cm2@–4 V0.46 A/W@1550 nm
    4.11 A/W@1310 nm
    NI MS本文
    下载: 导出CSV

    表 2  不同结构的有效肖特基势垒高度

    Table 2.  Effective Schottky barrier heights of different structures.

    结构类型i-Gen-GeGe-epi
    ITO0.34 eV0.24 eV0.29 eV
    2 nm Al2O3 + ITO0.55 eV0.56 eV0.30 eV
    2 nm MoO3 + ITO0.39 eV0.22 eV0.25 eV
    下载: 导出CSV
  • [1]

    Vivien L, Rouvière M, Fédéli J M, Marris-Morini D, Damlencourt J F, Mangeney J, Crozat P, Melhaoui L E, Cassan E, Le Roux X, Pascal D, Laval S 2007 Opt. Express 15 9843Google Scholar

    [2]

    Eng P C, Song S, Ping B 2015 Nanophotonics-Berlin 4 277Google Scholar

    [3]

    Soref R 1993 P. IEEE 81 1687Google Scholar

    [4]

    Soref R 2010 Nat. Photonics 4 495Google Scholar

    [5]

    Eng P C, Song S, Ping B 2010 Nat. Photonics 4 527Google Scholar

    [6]

    Wang J A, Lee S 2011 Sensors 11 696Google Scholar

    [7]

    Ahn D, Hong C Y, Liu F, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J, Kartner F X 2007 Opt. Express 15 3916Google Scholar

    [8]

    Kumar S, Chatterjee A, Selvaraja S K, Avasthi S 2020 IEEE Sens. J. 20 4660Google Scholar

    [9]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 1 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin-Phys. Mech. Astron. 1 15

    [10]

    Rogalski A 2003 Prog. Quant. Electron 27 59Google Scholar

    [11]

    Yu C Y, Huang Z W, Lin G Y, Mao Y C, Hong H Y, Zhang L, Zhao Y M, Wang J Y, Huang W, Chen S Y, Li C 2020 J. Phys. D 53 125103Google Scholar

    [12]

    Cui J S, Li T T, Yang F H, Cui W J, Chen H M 2021 Opt. Commun. 480 126467Google Scholar

    [13]

    Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252Google Scholar

    [14]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zhen J, Zuo Y H, Xue C L, Cheng B W 2020 Chinese Phys. Lett. 37 038503Google Scholar

    [15]

    Fama S, Colace L, Masini G, Assanto G, Luan H C 2002 Appl. Phys. Lett. 81 586Google Scholar

    [16]

    Liu J F, Michel J, Giziewicz W, Pan D, Wada K, Cannon D D, Jongthammanurak S, Danielson D T, Kimerling L C, Chen J, Ilday F O, Kartner F X, Yasaitis J 2005 Appl. Phys. Lett. 87 103501Google Scholar

    [17]

    Huang Z H, Kong N, Guo X Y, Liu M G, Duan N, Beck A L, Banerjee S K, Campbell J C 2006 IEEE J. Sel. Top. Quantum Electron. 12 1450Google Scholar

    [18]

    Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C 2009 Nat. Photonics 3 59Google Scholar

    [19]

    Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B, Shen D Z 2010 J. Phys. Chem. C 114 7169Google Scholar

    [20]

    Yu J, Shan C X, Qiao Q, Xie X H, Wang S P, Zhang Z Z, Shen D Z 2012 Sensors 12 1280Google Scholar

    [21]

    Huang Z W, Yu C Y, Chang A L, Zhao Y M, Huang W, Chen S Y, Li C 2020 J. Mater. Sci. 55 8630Google Scholar

    [22]

    Mazur M, Pastuszek R, Wojcieszak D, Kaczmarek D, Lubanska A https://www.emerald.com/insight/content/doi/10.1108/CW-11-2019-0170/full/html [2020-12-07]

    [23]

    Huang Z W, Mao Y C, Lin G Y, Yi X H, Chang A L, Li C, Chen S Y, Huang W, Wang J Y 2018 Opt. Express 26 5827Google Scholar

    [24]

    Assefa S, Fengnian X, Vlasov Y A 2010 In Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Los Angeles, CA USA, March 21−25, 2010 p1

    [25]

    Feng N N, Dong P, Zheng D W, Liao S R, Liang H, Shafiiha R, Feng D Z, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96Google Scholar

    [26]

    DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R, Davids P S 2011 Opt. Express 19 24897Google Scholar

    [27]

    Harris N C, Baehr-Jones T, Lim A E J, Liow T Y, Lo G Q, Hochberg M 2013 J. Lightwave Technol. 31 23Google Scholar

    [28]

    Chen H T, Verheyen P, De Heyn P, Lepage G, De Coster J, Absil P, Roelkens G, Van Campenhout J 2015 J. Lightwave Technol. 33 820Google Scholar

    [29]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [30]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773Google Scholar

    [31]

    Manik P P, Lodha S 2015 Appl. Phys. Express 8 051302Google Scholar

    [32]

    Robertson j 2000 J. Vac. Sci. Technol. B 18 1785Google Scholar

    [33]

    Zheng S, Yang W, Sun Q Q, Chen L, Zhou P, Wang P F, Zhang D W, Xiao F 2013 Appl. Phys. Lett. 103 261602

    [34]

    Irfan I, Turinske A J, Bao Z N, Gao Y L 2012 Appl. Phys. Lett. 101 093305Google Scholar

    [35]

    韩百超, 高明, 陈东运, 宋文磊, 宋晓敏, 徐飞, 赵磊, 马忠权, 张志恒, 莫镜辉 2017 第一届全国功能薄膜与涂层学术研讨会暨国际论坛 中国昆明 2017-07-23 p2

    Han B C, Gao M, Chen D Y, Song W L, Song X M, Xu F, Zhao L, Ma Z Q, Zhang Z H, Mo J H 2017 Summary of the First National Symposium on Functional Films and Coatings and International Forums Kun Ming, China, July 23, 2017 p2 (in Chinese)

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [4] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [5] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [6] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [7] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [9] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [11] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [12] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [13] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [14] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [15] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [16] 梁振江, 刘海霞, 牛燕雄, 尹贻恒. 基于谐振腔增强型石墨烯光电探测器的设计及 性能分析. 物理学报, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [17] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [18] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [19] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  6620
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-02-11
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-09-05

/

返回文章
返回