搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能

尉渊 邢若飞 杜慧恬 周倩 范继辉 庞智勇 韩圣浩

引用本文:
Citation:

通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能

尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩

Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value

Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao
PDF
HTML
导出引用
  • 氧化镍作为一种低成本、高稳定性的空穴传输材料, 在近些年被广泛地应用在反式钙钛矿太阳能电池中. 制备氧化镍空穴传输层最常用的方法是旋涂氧化镍纳米颗粒分散液, 因此对氧化镍颗粒粒度以及溶液加工性能提出了很高的要求. 本文通过精确控制合成过程中体系pH值, 实现了对氧化镍纳米颗粒粒度的调控, 进而制备了高质量的氧化镍空穴传输层. 实验表明合成体系pH值为9.5—9.8时, 可以制得平均粒径为5—10 nm的氧化镍纳米颗粒, 并且纳米颗粒具有良好的分散稳定性. 此外, 通过对氧化镍纳米颗粒进行结构成分分析, 发现由pH值调控的粒径变化并不会引起颗粒物质结构和成分的改变. 通过表面形貌分析, 由pH值调控获得的颗粒可制成致密且具有较小的粗糙度的薄膜, 该薄膜展现出良好的空穴抽取能力. 基于该薄膜的钙钛矿太阳能电池(MAPbI3)获得了17.39%的光电转化效率, 并且几乎没有迟滞现象. 本文的实验结果表明, 通过pH值精细调控氧化镍纳米颗粒粒度可以有效提升钙钛矿太阳能电池的性能. 本文的研究有望促进基于高性能氧化镍空穴传输层的钙钛矿太阳能电池研究.
    As a low-cost, high stable hole transport material, nickel oxide has been widely used in inverted structure perovskite solar cells in recent years. By far, the most common method of preparing nickel oxide hole transport layers is spin-coating pre-prepared nickel oxide nanoparticles (NiOx NPs), which puts forward high requirement for the particle sizes and solution processing capabilities of NiOx NPs. In this work, the sizes of NiOx NPs are precisely controlled by adjusting the pH value of the system in the synthesis process, and high-quality nickel oxide hole transport layers are then prepared. The experimental results exhibit that the NiOx NPs with sizes of 5–10 nm are obtained at a pH value in a range of 9.5–9.8. More interestingly, the obtained NiOx NPs have good dispersion stability and can achieve long-term dispersion in aqueous solution. Furthermore, the structural composition analysis of NiOx NPs shows that the pH value of the synthesis system does not have a significant effect on the material structure nor composition of the NiOx NP. Surface morphological analysis shows that the NiOx film prepared by the pH-controlled NiOx NPs is rather dense and particularly flat with small surface roughness. It is also found that the film exhibits good hole extraction capability. We also fabricate an inverted perovskite solar cell based on the NiOx film. The device structure is ITO/NiOx/CH3NH3PbI3/PC61BM/Bphen/Ag. It yields a good photovoltaic conversion efficiency (17.39%). In addition, the device is almost hysteresis-free. Our experimental results exhibit that the performance of perovskite solar cells can be effectively improved by precisely controlling the sizes of NiOx NPs through pH values. Our work is expected to facilitate the development of NiOx-based perovskite solar cells.
      通信作者: 范继辉, hansh@sdu.edu.cn ; 韩圣浩, fanjihui@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274259, 11874237)和山东省自然科学基金重大项目(批准号: ZR2019ZD43)资助的课题.
      Corresponding author: Fan Ji-Hui, hansh@sdu.edu.cn ; Han Sheng-Hao, fanjihui@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274259, 11874237) and the Major Program of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD43).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022

    [3]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [4]

    Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar

    [5]

    Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar

    [6]

    Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar

    [7]

    Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar

    [8]

    Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar

    [9]

    Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar

    [10]

    Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar

    [11]

    Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar

    [12]

    Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar

    [13]

    Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar

    [14]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [15]

    Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [16]

    Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914

    [17]

    Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar

    [18]

    Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar

    [19]

    He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar

    [20]

    Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [21]

    Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar

    [22]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar

    [23]

    Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205

    [24]

    Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370

    [25]

    Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar

    [26]

    Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar

  • 图 1  合成体系pH为(a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3的NiOx纳米颗粒的TEM形貌图; (f) TEM图粒径统计; 纳米粒度仪测得的NiOx纳米颗粒; (g) 粒径分布; (h) 平均粒径

    Fig. 1.  TEM images of NiOx nanoparticles prepared at pH of (a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8 and (e) 10.3; (f) particle size statistics for TEM image; (g) particle size distributions and (h) average particle size of NiOx nanoparticles measured by nanoparticle size analyzer

    图 2  调制pH为(a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3, (f) 11.5得到的Ni(OH)2粉体的TEM形貌图

    Fig. 2.  TEM images of Ni(OH)2 powers prepared at pH of (a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3 and (f) 11.5.

    图 3  (a) NiOx纳米颗粒的Zeta电位; NiOx纳米颗粒分散液沉降照片 (b) 初始; (c) 21天; (d) 70天

    Fig. 3.  (a) Zeta potential of NiOx nanoparticles; (b)–(d) deposition photographs of NiOx dispersion solution at different time: (b) At beginning; (c) 21 days; (d) 70 days.

    图 4  NiOx纳米颗粒的 (a)—(e) XPS图; (f) XRD图

    Fig. 4.  (a)–(e) XPS images of NiOx nanoparticles; (f) XRD image of NiOx nanoparticles.

    图 5  合成体系pH值为(a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3的NiOx颗粒制备的薄膜的AFM图; (f) NiOx薄膜截面轮廓图

    Fig. 5.  AFM images of NiOx films prepared from different NiOx nanoparticles synthesized at pH (a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8 and (e) 10.3; (f) cross-sectional profiles of NiOx films.

    图 6  钙钛矿复合薄膜ITO/NiOx/MAPbI3的 (a)—(e) SEM图, (f) PL谱图, (g) 荧光寿命图.

    Fig. 6.  (a)–(e) SEM images, (f) PL spectra, and (g) PL decay spectra of perovskite film (ITO/NiOx/MAPbI3).

    图 7  基于NiOx传输层的钙钛矿太阳能电池的 (a)—(d) J-V曲线; (e) EQE图; (f) 最佳器件的稳态输出曲线

    Fig. 7.  (a)–(d) J-V curves and (e) EQE spectra of NiOx transport layer-based perovskite solar cells; (f) steady-state output curve of the best device.

    表 1  基于不同NiOx薄膜的钙钛矿太阳电池的光伏参数(每组10个器件)

    Table 1.  Photovoltaic parameters of perovskite solar cells based on different NiOx films averaged over 10 cells.

    pHJsc/(mA·cm–2)Voc/VFF/%PCEave/%PCEmax/%
    9.217.99 ± 1.141.006 ± 0.02469.89 ± 4.4312.62 ± 0.6513.76
    9.519.72 ± 0.571.064 ± 0.00679.02 ± 0.9616.58 ± 0.4917.39
    9.819.39 ± 0.511.065 ± 0.00579.86 ± 0.4616.48 ± 0.4517.17
    10.319.05 ± 0.441.058 ± 0.00477.56 ± 0.8415.62 ± 0.4116.49
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022

    [3]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [4]

    Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar

    [5]

    Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar

    [6]

    Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar

    [7]

    Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar

    [8]

    Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar

    [9]

    Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar

    [10]

    Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar

    [11]

    Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar

    [12]

    Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar

    [13]

    Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar

    [14]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [15]

    Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [16]

    Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914

    [17]

    Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar

    [18]

    Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar

    [19]

    He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar

    [20]

    Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [21]

    Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar

    [22]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar

    [23]

    Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205

    [24]

    Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370

    [25]

    Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar

    [26]

    Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池的研究. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241238
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [7] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术. 物理学报, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [8] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [11] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [13] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [14] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [15] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [16] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
计量
  • 文章访问数:  4494
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-09-20
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回