搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

YBa2Cu3O7–δ薄膜微结构的同步辐射三维倒空间扫描研究

易栖如 熊沛雨 王焕华 李港 王云开 董恩阳 陈雨 沈治邦 吴云 袁洁 金魁 高琛

引用本文:
Citation:

YBa2Cu3O7–δ薄膜微结构的同步辐射三维倒空间扫描研究

易栖如, 熊沛雨, 王焕华, 李港, 王云开, 董恩阳, 陈雨, 沈治邦, 吴云, 袁洁, 金魁, 高琛

Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping

Yi Qi-Ru, Xiong Pei-Yu, Wang Huan-Hua, Li Gang, Wang Yun-Kai, Dong En-Yang, Chen Yu, Shen Zhi-Bang, Wu Yun, Yuan Jie, Jin Kui, Gao Chen
PDF
HTML
导出引用
  • 高温超导薄膜因其微波表面电阻低, 可用于尖端高温超导微波器件的制作. 然而由于高温超导材料特殊的二维超导机制和极短的超导相干长度, 高温超导材料的微波表面电阻对微结构特别敏感. 为了探究高温超导材料微结构和微波电阻的联系, 采用脉冲激光沉积(PLD)技术在(00l)取向的MgO单晶衬底上生长了不同厚度的YBa2Cu3O7 –δ (YBCO)薄膜. 电学测量发现不同厚度的样品超导转变温度、常温电阻差别不大, 但超导态的微波表面电阻差异很大. 同步辐射三维倒空间扫描(3D-RSM)技术对YBCO薄膜微结构的表征表明: CuO2面平行于表面晶粒(c晶)的多寡、晶粒取向的一致性是造成超导态微波表面电阻差异的主要原因.
    High-temperature superconducting films can be used for fabricating the cutting-edge high-temperature superconducting microwave devices because of their low microwave surface resistances. However, the microwave surface resistances of high-temperature superconducting materials are particularly sensitive to microstructure due to their special two-dimensional superconducting mechanisms and extremely short superconducting coherence lengths. To investigate the correlations between microstructure and microwave surface resistance of high-temperature superconducting materials, YBa2Cu3O7-δ (YBCO) films with different thickness are grown on (00l)-oriented MgO single-crystal substrates by using the pulsed laser deposition (PLD) technique. Electrical measurements reveal that their superconducting transition temperatures and room temperature resistances do not show significant difference. However, their microwave surface resistances in superconducting state display a significant difference. The characterizations of the microstructures of YBCO films by synchrotron radiation three-dimensional reciprocal space mapping(3D-RSM) technique show that the number of the grains with CuO2 face parallel to the surface (c crystals), and the consistency of grain orientation are the main causes for the difference in microwave surface resistance.
      通信作者: 高琛, gaochen@ucas.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2022YFA1603900)、中央高校基本科研业务费专项资金(批准号: E1E40207X2)和中国科学院大学高水平人才培育与稳定支持专项(批准号: E1EG0210X2, 118900M018)资助的课题.
      Corresponding author: Gao Chen, gaochen@ucas.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China(Grant No. 2022YFA1603900), the Fundamental Research Funds for the Central Universities (Grant No. E1E40207X2) and UCAS (Grant Nos. E1EG0210X2, 118900M018)
    [1]

    Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar

    [2]

    Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar

    [3]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar

    [4]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [5]

    Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar

    [6]

    Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar

    [7]

    Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [10]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [11]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412

    [12]

    Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar

    [13]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [14]

    Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar

    [15]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [16]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [17]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827

    [18]

    Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar

    [19]

    孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar

    Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar

    [20]

    Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar

    [21]

    He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar

    [22]

    Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar

    [23]

    邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar

    ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar

    [24]

    Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar

    [25]

    Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar

    [26]

    Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar

    [27]

    Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar

    [28]

    Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar

    [29]

    Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar

    [30]

    Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar

    [31]

    Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar

    [32]

    Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar

    [33]

    Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar

    [34]

    Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar

    [35]

    Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423

    [36]

    Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar

    [37]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar

    [38]

    Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar

    [40]

    Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar

    [41]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar

    [42]

    Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar

    [43]

    Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar

    [44]

    Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar

    [45]

    Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [48]

    Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar

    [49]

    Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar

    [50]

    Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar

    [51]

    Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar

    [52]

    Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114

    [53]

    Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar

    [54]

    Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar

    [55]

    Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar

    [56]

    Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar

    [57]

    Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3

  • 图 1  3D-RSM衍射几何的示意图

    Fig. 1.  Schematic diagram of 3D-RSM.

    图 2  1#样品和2#样品 (a)直流电阻R和(b)微波表面电阻Rs对温度的依赖关系

    Fig. 2.  Dependence of (a) DC resistance R and (b) microwave surface resistance Rs on temperature for sample 1# and sample 2#.

    图 3  (a) 1#样品和(b)2#样品(108)衍射峰的3D-RSM; (c) 1#样品和(d)2#样品(108)衍射峰3D-RSM在水平面上的投影

    Fig. 3.  (a) 3D-RSM of (108) diffraction peaks for sample 1#, and (b) sample 2#; (c) projection of (108) 3D-RSM of sample 1#, and (d) sample 2# on the horizontal plane.

    图 4  (a) 1#样品和(b) 2#样品(200)衍射峰的3D-RSM

    Fig. 4.  3D-RSM of (a) sample #1, and (b) sample #2 around the (200) diffraction peak.

    图 5  (a) 1#样品和(b) 2#样品(109)衍射峰的3D-RSM, 图中同时画出了(108)的3D-RSM; (c)和(d)是(a)和(b)在45º方向的垂直截面

    Fig. 5.  (a) 3D-RSM of sample 1#, and (b) sample 2# around the (109) diffraction peak, while 3D-RSM of the diffraction peak of (108) are plotted in the figure; (c) and (d) are vertical cross sections of (a) and (b) in the 45º direction.

    表 1  YBCO(108), (018), (109), (019), (130)衍射峰的相对强度

    Table 1.  Relative intensities of YBCO (108), (018), (109), (019), (130) diffraction peaks.

    衍射峰实测三维积分强度
    (108)(018)(109)(019)(130)
    卡片上的相对强度13 56 4 5
    YBCO 400 nm$ 9.136\times {10}^{6} $$ 5.974\times {10}^{6} $
    YBCO 1000 nm$ 11.503\times {10}^{6} $$ 7.769\times {10}^{6} $
    下载: 导出CSV

    表 2  由(109), (019), (130)衍射峰的强度计算出的c晶/b晶比

    Table 2.  The c-crystal to b-crystal ratio calculated from the intensities of the (109), (019), and (130) diffraction peaks.

    样品厚度衍射峰三维积分强度c晶/b晶比
    (109), (019)(130)
    YBCO 400 nm$ 1.015\times {10}^{6} $$ 0.180\times {10}^{6} $5.639∶1
    YBCO 1000 nm$ 1.278\times {10}^{6} $$ 0.276\times {10}^{6} $4.630∶1
    下载: 导出CSV
  • [1]

    Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar

    [2]

    Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar

    [3]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar

    [4]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [5]

    Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar

    [6]

    Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar

    [7]

    Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [10]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [11]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412

    [12]

    Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar

    [13]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [14]

    Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar

    [15]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [16]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [17]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827

    [18]

    Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar

    [19]

    孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar

    Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar

    [20]

    Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar

    [21]

    He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar

    [22]

    Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar

    [23]

    邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar

    ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar

    [24]

    Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar

    [25]

    Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar

    [26]

    Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar

    [27]

    Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar

    [28]

    Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar

    [29]

    Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar

    [30]

    Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar

    [31]

    Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar

    [32]

    Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar

    [33]

    Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar

    [34]

    Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar

    [35]

    Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423

    [36]

    Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar

    [37]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar

    [38]

    Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar

    [40]

    Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar

    [41]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar

    [42]

    Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar

    [43]

    Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar

    [44]

    Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar

    [45]

    Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [48]

    Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar

    [49]

    Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar

    [50]

    Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar

    [51]

    Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar

    [52]

    Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114

    [53]

    Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar

    [54]

    Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar

    [55]

    Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar

    [56]

    Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar

    [57]

    Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3

  • [1] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [2] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [3] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [4] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [5] 田晶, 杨鑫, 刘尚军, 练晓娟, 陈金伟, 王瑞林. 直流磁控溅射厚度对Cu(Inx,Ga1-x)Se2背接触Mo薄膜性能的影响. 物理学报, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [6] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [7] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [8] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [9] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 物理学报, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [10] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [11] 刘雪芹, 韩国俭, 黄春奎, 兰伟. Raman光谱研究厚度对La0.9Sr0.1MnO3/Si薄膜结构的影响. 物理学报, 2009, 58(11): 8008-8013. doi: 10.7498/aps.58.8008
    [12] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [13] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [14] 黄 锐, 林璇英, 余云鹏, 林揆训, 祝祖送, 魏俊红. 氢稀释对多晶硅薄膜结构特性和光学特性的影响. 物理学报, 2006, 55(5): 2523-2528. doi: 10.7498/aps.55.2523
    [15] 蔡衍卿, 姚 忻, 李 刚. 关于YBCO薄膜过热现象的研究. 物理学报, 2006, 55(2): 844-848. doi: 10.7498/aps.55.844
    [16] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [17] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [18] 张世斌, 廖显伯, 安龙, 杨富华, 孔光临, 王永谦, 徐艳月, 陈长勇, 刁宏伟. 非晶微晶过渡区域硅薄膜的微区喇曼散射研究. 物理学报, 2002, 51(8): 1811-1815. doi: 10.7498/aps.51.1811
    [19] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [20] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
计量
  • 文章访问数:  4519
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-12
  • 修回日期:  2022-11-09
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-20

/

返回文章
返回