-
高温超导薄膜因其微波表面电阻低, 可用于尖端高温超导微波器件的制作. 然而由于高温超导材料特殊的二维超导机制和极短的超导相干长度, 高温超导材料的微波表面电阻对微结构特别敏感. 为了探究高温超导材料微结构和微波电阻的联系, 采用脉冲激光沉积(PLD)技术在(00l)取向的MgO单晶衬底上生长了不同厚度的YBa2Cu3O7 –δ (YBCO)薄膜. 电学测量发现不同厚度的样品超导转变温度、常温电阻差别不大, 但超导态的微波表面电阻差异很大. 同步辐射三维倒空间扫描(3D-RSM)技术对YBCO薄膜微结构的表征表明: CuO2面平行于表面晶粒(c晶)的多寡、晶粒取向的一致性是造成超导态微波表面电阻差异的主要原因.High-temperature superconducting films can be used for fabricating the cutting-edge high-temperature superconducting microwave devices because of their low microwave surface resistances. However, the microwave surface resistances of high-temperature superconducting materials are particularly sensitive to microstructure due to their special two-dimensional superconducting mechanisms and extremely short superconducting coherence lengths. To investigate the correlations between microstructure and microwave surface resistance of high-temperature superconducting materials, YBa2Cu3O7-δ (YBCO) films with different thickness are grown on (00l)-oriented MgO single-crystal substrates by using the pulsed laser deposition (PLD) technique. Electrical measurements reveal that their superconducting transition temperatures and room temperature resistances do not show significant difference. However, their microwave surface resistances in superconducting state display a significant difference. The characterizations of the microstructures of YBCO films by synchrotron radiation three-dimensional reciprocal space mapping(3D-RSM) technique show that the number of the grains with CuO2 face parallel to the surface (c crystals), and the consistency of grain orientation are the main causes for the difference in microwave surface resistance.
[1] Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar
[2] Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar
[3] Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar
[4] Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar
[5] Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar
[6] Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar
[7] Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[9] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[10] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar
[11] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412
[12] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar
[13] Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar
[14] Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar
[15] Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar
[16] Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar
[17] 蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827
Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827
[18] Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar
[19] 孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar
Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar
[20] Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar
[21] He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar
[22] Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar
[23] 邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar
ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar
[24] Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar
[25] Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar
[26] Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar
[27] Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar
[28] Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar
[29] Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar
[30] Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar
[31] Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar
[32] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar
[33] Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar
[34] Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar
[35] Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423
[36] Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar
[37] Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar
[38] Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar
[39] Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar
[40] Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar
[41] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar
[42] Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar
[43] Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar
[44] Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar
[45] Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar
[46] Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar
[47] Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar
[48] Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar
[49] Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar
[50] Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar
[51] Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar
[52] Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114
[53] Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar
[54] Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar
[55] Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar
[56] Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar
[57] Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3
-
图 5 (a) 1#样品和(b) 2#样品(109)衍射峰的3D-RSM, 图中同时画出了(108)的3D-RSM; (c)和(d)是(a)和(b)在45º方向的垂直截面
Fig. 5. (a) 3D-RSM of sample 1#, and (b) sample 2# around the (109) diffraction peak, while 3D-RSM of the diffraction peak of (108) are plotted in the figure; (c) and (d) are vertical cross sections of (a) and (b) in the 45º direction.
表 1 YBCO(108), (018), (109), (019), (130)衍射峰的相对强度
Table 1. Relative intensities of YBCO (108), (018), (109), (019), (130) diffraction peaks.
衍射峰实测三维积分强度 (108)(018) (109)(019)(130) 卡片上的相对强度 13 5 6 4 5 YBCO 400 nm $ 9.136\times {10}^{6} $ $ 5.974\times {10}^{6} $ YBCO 1000 nm $ 11.503\times {10}^{6} $ $ 7.769\times {10}^{6} $ 表 2 由(109), (019), (130)衍射峰的强度计算出的c晶/b晶比
Table 2. The c-crystal to b-crystal ratio calculated from the intensities of the (109), (019), and (130) diffraction peaks.
样品厚度 衍射峰三维积分强度 c晶/b晶比 (109), (019) (130) YBCO 400 nm $ 1.015\times {10}^{6} $ $ 0.180\times {10}^{6} $ 5.639∶1 YBCO 1000 nm $ 1.278\times {10}^{6} $ $ 0.276\times {10}^{6} $ 4.630∶1 -
[1] Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar
[2] Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar
[3] Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar
[4] Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar
[5] Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar
[6] Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar
[7] Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[9] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[10] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar
[11] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412
[12] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar
[13] Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar
[14] Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar
[15] Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar
[16] Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar
[17] 蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827
Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827
[18] Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar
[19] 孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar
Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar
[20] Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar
[21] He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar
[22] Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar
[23] 邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar
ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar
[24] Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar
[25] Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar
[26] Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar
[27] Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar
[28] Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar
[29] Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar
[30] Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar
[31] Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar
[32] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar
[33] Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar
[34] Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar
[35] Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423
[36] Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar
[37] Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar
[38] Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar
[39] Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar
[40] Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar
[41] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar
[42] Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar
[43] Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar
[44] Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar
[45] Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar
[46] Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar
[47] Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar
[48] Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar
[49] Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar
[50] Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar
[51] Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar
[52] Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114
[53] Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar
[54] Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar
[55] Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar
[56] Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar
[57] Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3
计量
- 文章访问数: 4519
- PDF下载量: 114
- 被引次数: 0